博碩士論文 105621011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.129.13.201
姓名 薛乃儒(Nai-Ju Hsueh)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers)
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 利用AERONET資料解析中南半島地區氣膠種類及成分
★ 氣膠對臺灣北部暖雲微物理和毛雨的影響★ 氣膠對臺灣中部平原夏季降水日變化之影響
★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究
★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程
★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例★ 利用向日葵8號衛星及單層輻射模式反演地面輻射量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於氣候研究以及太陽能發電系統的發展,準確地量測地表太陽輻射通量相當的重要。全天空短波輻射計(pyranometer)是在地表上量測太陽輻射通量最主要的儀器,為增進觀測的準確性,定期進行儀器校正以及分析其觀測的誤差來源是不可或缺的,熱偏移誤差(thermal offset error)是全天空短波輻射計的觀測中最主要的誤差來源之一,此誤差是由於全天空短波輻射計的玻璃圓頂(dome)與感測器(detector)的溫度差異,而造成地表輻射通量之量測有偏差的情形,通常會造成觀測之高估。為了解市面上不同型號的全天空短波輻射計之熱偏移誤差的特徵,以及不同誤差修正方法的效果,我們與美國國家海洋暨大氣總署(National Oceanic and Atmospheric Administration, NOAA)及全天空短波輻射計的製造商合作,匯集總共20台全天空短波輻射計於國立中央大學進行室外觀測實驗,實驗期間為2017年12月到2018年3月。為使每一台參與實驗的全天空短波輻射計之校正係數(sensitivity)追溯至共同的標準,吾人分別參考ISO9847與ISO9846進行室內與室外校正。校正結果顯示,室外校正係數具有較小的擴充不確定度(expanded uncertainty) (1.28%),且相較於原廠的校正係數,室外校正係數的改變量較小(-0.34%),而室內校正係數則具有2.33%的擴充不確定度及0.75%的改變量,因此我們選用室外校正係數於後續的分析。
本研究參考Younkin and Long (2003)的熱偏移誤差修正方法,於夜晚建立單變數(detector only)與雙變數(full)的誤差修正模型,套用在白天的太陽輻射觀測進行誤差修正(detector only correction與full correction),並與NOAA提供的標準件互相比對。分析結果顯示,三款新型的全天空短波輻射計(MS-80、SR25-T2及SR30-D1)之設計,對於熱偏移誤差皆有所改良,其夜間平均的熱偏移誤差僅為-0.28Wm-2,相較於其他輻射計之數值落於-2.08至-0.39 Wm-2之間少很多,因此對於其他沒有針對熱偏移誤差改良的儀器而言,進行誤差修正是必要的。根據評估,full correction method適用於一半以上參與實驗的全天空短波輻射計,例如型號CMP11、CMP21、CMP22、MS-80、裝有通風設備的SR-75、SPP與PSP,平均的修正改善量為0.17-2.51 Wm-2,而未通風的SR20-D2與PSP及通風的SR30-D1適用之修正方法為detector only correction,平均的修正改善量為0.10-1.04 Wm-2。此外,即使已進行熱偏移誤差修正,在太陽位在高仰角時,幾乎所有全天空短波輻射計量測到的太陽輻射通量都有高估的情形,我們認為這與太陽劇烈加熱下的玻璃圓頂溫度與環境溫度有關;相較在太陽位於低仰角時,觀測有較高的誤差百分比(percent deviation),則主要與儀器感測器的餘旋響應(cosine response)有關。最後,分析使用通風設備與否的觀測資料發現,除了SR-75和SR20,其他型號的全天空短波輻射計在通風的情況下,都有較小的熱偏移誤差,此說明了通風對於全天空短波輻射計的觀測之重要性。此實驗結果說明全天空短波輻射計的選擇、加裝通風設備與否、及熱偏移誤差修正的使用皆會影響全天空短波輻射計的觀測結果,對於全天空短波輻射觀測的準確性相當重要。
摘要(英) Accurate measurement of solar radiation arriving at the Earth’s surface is an important information not only to the climate researches but also to the solar power systems. A pyranometer is a major instrument used for measuring solar radiation on a plane surface. To ensure the measuring accuracy, regular calibration of pyranometers and identification of the main errors are necessary. For pyranometers, the thermal offset error is one of the main errors which is due to the temperature difference between the detector and the domes, and it usually results in the overestimation of the measurements. In order to investigate the characteristic of thermal offset for different pyranometers and the performance of different correction methods, we collected 20 pyranometers and carried out an inter-comparison experiment at NCU in cooperation with NOAA and pyranometer manufactures from December 2017 to March 2018. All the participating pyranometers were calibrated with indoor and outdoor ISO calibration procedures to ensure the sensitivities are traceable to reference values. The sensitivities from outdoor calibration were chosen because their lower expanded uncertainty (1.28%) and lower percentage change in sensitivity (-0.34%) compared to the values of 2.33% and 0.75% for indoor calibration.
Two thermal offset correction methods (i.e., detector only and full correction methods) were applied to daytime irradiance during the experimental period, and the values after correction were compared to the reference units provided by NOAA. Our results show that the three modern pyranometer models (MS-80, SR25-T2, and SR30-D1), which had been designed for improving the thermal offset error, have the mean magnitudes of nighttime thermal offset (-0.28 Wm-2) much lower than that of the other pyranometers (-2.08 to -0.39 Wm-2). For the pyranometers which were designed without considering the thermal offset error, the correction for the error is necessary. According to the assessment, the full correction method is suitable for more than half the pyranometers such as CMP11, CMP21, CMP22, MS-80, and ventilated SR-75, SPP, and PSP (average correction improvement: 0.17-2.51 Wm-2); however, the better method for unventilated SR20-D2 and PSP, and ventilated SR30-D1 is the detector only correction (average correction improvement: 0.10-1.04 Wm-2). Furthermore, although the thermal offset correction was applied, the daytime data still show overestimation for most of the pyranometers at small solar zenith angle. We suggest that the dome and ambient temperatures may play an important role in this measurement error of pyranometers. In contrast, at large solar zenith angle, the high percent deviation from the reference is due to the cosine response of the pyranometer sensor. Finally, except for the pyranometer model SR-75 and SR20, other models show that the mean values of the magnitudes of thermal offset are smaller when the ventilators were installed, which indicates the importance of ventilation to pyranometers. The results of the experiment show that the pyranometer measurements are affected by the choice of pyranometers, the on/off of the ventilation, and the usage of the thermal offset correction method.
關鍵字(中) ★ 全天空短波輻射計
★ 熱偏移誤差
關鍵字(英) ★ pyranometer
★ thermal offset
論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Tables viii
List of Figures x
1. Introduction 1
1.1 Research Motivation 1
1.2 Research Objectives 3
2. Literature Review 4
2.1 Measurement of Surface Solar Irradiance 4
2.2 Current Methods of Correcting Thermal Offset 6
3. Methodology 7
3.1 Site and Instruments 7
3.1.1 Site Description 7
3.1.2 Radiometers 7
3.1.3 Sun Tracker 10
3.1.4 Meteorological Sensors 10
3.1.5 Dataloggers 10
3.2 Experimental Design 11
3.3 Pyranometer Calibration Procedure 11
3.3.1 Indoor Calibration Procedure 12
3.3.2 Outdoor Calibration Procedure 14
3.3.3 Calculate Calibration Uncertainty 17
3.4 Data Quality Control Procedure 20
3.4.1 Physically Possible Limits 20
3.4.2 Extremely Rare Minimum Limits 21
3.4.3 Comparison Tests 21
3.5 Thermal Offset Correction Methods 22
3.5.1 Correction Using Collocated Pyrgeometer: Detector Only Correction 23
3.5.2 Correction Using Collocated Pyrgeometer: Full Correction 24
4. Results and Discussion 25
4.1 Calibration Results 25
4.1.1 Indoor Calibration Results and Uncertainties 25
4.1.2 Outdoor Calibration Results and Uncertainties 26
4.1.3 Choose the Proper Sensitivities 27
4.2 Surface Measurements during Experimental Period 28
4.3 Thermal Offset Correction Results 31
4.3.1 Detector Only Correction Results 31
4.3.2 Full Correction Results 33
4.4 The Effect of Ventilation on Thermal Offset 36
5. Summary 37
5.1 Summary 37
5.2 Future Work 39
References 40
參考文獻 Abbot, C. G., and L. B. Aldrich (1916), The Pyranometer: An Instrument for Measuring Sky Radiation, Proceedings of the National Academy of Sciences, 2(6), 333-335.
Augustine, J. A., and E. G. Dutton (2013), Variability of the surface radiation budget over the United States from 1996 through 2011 from high?quality measurements, Journal of Geophysical Research: Atmospheres, 118(1), 43-53.
Augustine, J. A., J. J. DeLuisi, and C. N. Long (2000), SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research, Bulletin of the American Meteorological Society, 81(10), 2341–2357, doi:10.1175/1520-0477(2000)081<234 1:SANSRB>2.3.CO;2.
Augustine, J. A., G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and C. I. Medina (2005), An Update on SURFRAD—The GCOS Surface Radiation Budget Network for the Continental United States, Journal of Atmospheric and Oceanic Technology, 22(10), 1460–1472, doi:10.1175/JTECH1806.1.
Bush, B., and F. P. J. Valero (2002), Spectral aerosol radiative forcing at the surface during the Indian Ocean Experiment (INDEOX), Journal of Geophysical Research: Atmospheres, 107(D19), 8003, doi:10.1029/2000JD000020.
—— (2003), Surface aerosol radiative forcing at Gosan during the ACE?Asia campaign, Journal of Geophysical Research: Atmospheres, 108(D23), 8660,doi:10.1029/ 2002JD003233.
Bush, B. C., F. P. J. Valero, A. S. Simpson, and L. Bignone (2000), Characterization of Thermal Effects in Pyranometers: A Data Correction Algorithm for Improved Measurement of Surface Insolation, Journal of Atmospheric and Oceanic Technology, 17(2), 165–175, doi:10.1175/1520-0426(2000)017<0165:COTEIP>2.0.CO;2.
Coulson, K. (2012), Solar and terrestrial radiation: methods and measurements, Elsevier.
?
Dutton, E. G. et al. (2001), Measurement of Broadband Diffuse Solar Irradiance Using Current Commercial Instrumentation with a Correction for Thermal Offset Errors, Journal of Atmospheric and Oceanic Technology, 18(3), 297–314, doi:10.1175/1520-0426(2001) 018<0297:MOBDSI>2.0.CO;2.
Drummond, K. L., and J. J. Roche (1965), Corrections to be applied to measurements made with Eppley (and other) spectral radiometers when used with Schott colored glass filters, Journal of Applied Meteorology, 4(6), 741–744.
EKO (2012), Sun Tracker STR-21G/22G/32G Instruction Manual, version 5.
—— (2016), Pyranometer MS-80 Instruction Manual, version 2.
Garcia, O. E., et al. (2008), Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements, Journal of Geophysical Research: Atmospheres, 113(D21), doi:10.1029/2008JD010211.
—— (2014), Solar radiation measurements compared to simulations at the BSRN Izana station. Mineral dust radiative forcing and efficiency study, Journal of Geophysical Research: Atmospheres, 119(1), 179-194.
Haeffelin, M., S. Kato, A. M. Smith, C. K. Rutledge, T. P. Charlock, and J. R. Mahan (2001), Determination of the thermal offset of the Eppley precision spectral pyranometer, Applied Optics, 40(4), 472–484, doi:10.1364/AO.40.000472.
Hegner, H., G. Muller, V. Nespor, A. Ohmura, R. Steigrad, and H. Gilgen (1998), Update of the technical plan for BSRN data management, World Radiation Monitoring Center (WRMC) Technical Report 2, version 1.0.
Hukseflux (2017), User manual SR20 secondary standard pyranometer, Manual v1713.
—— (2017), User manual SR25 secondary standard pyranometer with sapphire outer dome, Manual v1710.
—— (2018), User manual SR20-D2 digital secondary standard pyranometer with Modbus RTU and 4-20 mA output, Manual v1809.
—— (2018), User manual SR30 next level digital secondary standard pyranometer, Manual v1804.

Hyett, N. (2000), BSRN uncertainty report, Sixth BSRN Science and Review Workshop, Melbourne, Australia.
International Organization for Standardization (1990), Solar energy -- Calibration of field pyrheliometers by comparison to a reference pyrheliometer, ISO 9059.
—— (1990), Solar energy -- Specification and classification of instruments for measuring hemispherical solar and direct solar radiation, ISO 9060.
—— (1992), Solar energy -- Calibration of field pyranometers by comparison to a reference pyranometer, ISO 9847.
—— (1993), Solar energy -- Calibration of a pyranometer using a pyrheliometer, ISO 9846.
JCGM/WG 1 2008 Working Group (2008), Evaluation of measurement data – guide to the expression of uncertainty in measurement, Technical Report JCGM 100:2008.
Ji, Q. (2007), A Method to Correct the Thermal Dome Effect of Pyranometers in Selected Historical Solar Irradiance Measurements, Journal of Atmospheric and Oceanic Technology, 24(3), 529–536, doi:10.1175/JTECH1977.1.
Ji, Q., and S.-C. Tsay (2000), On the dome effect of Eppley pyrgeometers and pyranometers, Geophysical Research Letters, 27(7), 971–974, doi:10.1029/1999GL011093.
—— (2010), A novel nonintrusive method to resolve the thermal dome effect of pyranometers: Instrumentation and observational basis, Journal of Geophysical Research: Atmospheres, 115(D7), D00K21, doi:10.1029/2009JD013483.
Ji, Q., S.-C. Tsay, K. M. Lau, R. A. Hansell, J. J. Butler, and J. W. Cooper (2011), A novel nonintrusive method to resolve the thermal dome effect of pyranometers: Radiometric calibration and implications, Journal of Geophysical Research: Atmospheres, 116(D24), D24105, doi:10.1029/2011JD016466.
Kipp and Zonen (2006), Instruction manual for CFR calibration facility, version V0107.
—— (2014), Instruction manual for CGR4 pyrgeometer, version V1401.
—— (2016), Instruction manual for CMP series pyranometers and CMA series albedometers, version V1610.

Long, C. N., and E. G. Dutton (2002), BSRN Global Network recommended QC tests, V2.0, BSRN Technical Report.
Long, C. N., and Y. Shi (2006), The QCRad value added product: Surface radiation measurement quality control testing, including climatology configurable limits (No. DOE/SC-ARM/TR-074), DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States).
McArthur, L. J. B. (2005), Baseline Surface Radiation Network (BSRN). Operations Manual., WMO/TD-No. 1274, WCRP/WMO.
Michalsky, J. J. et al. (2005), Toward the development of a diffuse horizontal shortwave irradiance working standard, Journal of Geophysical Research: Atmospheres, 110(D6), doi:10.1029/2004JD005265.
Michalsky, J. J., M. Kutchenreiter, and C. N. Long (2017), Significant improvements in pyranometer nighttime offsets using high-flow DC ventilation, Journal of Atmospheric and Oceanic Technology, 34(6), 1323–1332, doi:10.1175/JTECH-D-16-0224.1.
Middleton Solar (2015), User’s guide for Middleton Solar EQ08-S, EQ08-SE secondary standard pyranometer, version 1.9.
Ohmura, A. et al. (1998), Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research, Bulletin of the American Meteorological Society, 79(10), 2115–2136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.
Patsalides, M. et al. (2007), The effect of solar irradiance on the power quality behaviour of grid connected photovoltaic systems, International Conference on Renewable Energy and Power Quality, Seville, Spain, EA4EPQ, 284.
—— (2012), Towards the establishment of maximum PV generation limits due to power quality constraints, International Journal of Electrical Power & Energy Systems, 42(1), 285-298.
Philipona, R. (2002), Underestimation of solar global and diffuse radiation measured at Earth’s surface, Journal of Geophysical Research: Atmospheres, 107(D22), 4654, doi:10.1029/2002JD002396.
Reda, I., T. Stoffel, and D. Myers (2003), A method to calibrate a solar pyranometer for measuring reference diffuse irradiance, Solar Energy, 74(2), 103–112, doi:10.1016/S0038-092X(03)00124-5.
Sanchez, G., M. L. Cancillo, and A. Serrano (2016), An intercomparison of the thermal offset for different pyranometers, Journal of Geophysical Research: Atmospheres, 121(13), 7901-7912.
—— (2017), Effect of Mechanical Ventilation on the Thermal Offset of Pyranometers during Cloud-Free Summer Conditions, Journal of Atmospheric and Oceanic Technology, 34(5), 1155-1173.
Sanchez, G., A. Serrano, M. L. Cancillo, and J. A. Garcia (2014), Pyranometer thermal offset: measurement and analysis, Journal of Atmospheric and Oceanic Technology, 32(2), 234–246, doi:10.1175/JTECH-D-14-00082.1
Serrano, A., G. Sanchez, and M. L. Cancillo (2015), Correcting daytime thermal offset in unventilated pyranometers, Journal of Atmospheric and Oceanic Technology, 32(11), 2088–2099, doi:10.1175/JTECH-D-15-0058.1
Vignola, F., J. Michalsky, and T. Stoffel (2012), Solar and infrared radiation measurements, CRC press, Taylor & Francis Group, ISBN 978-1-4398-5189-0.
Wild, M. (2005), Solar radiation budgets in atmospheric model intercomparisons from a surface perspective, Geophysical research letters, 32(7), doi:10.1029/2005GL022421.
—— (2009), Global dimming and brightening: A review, Journal of Geophysical Research: Atmospheres, 114(D10), doi:10.1029/2008JD011470.
Wild, M., D. Folini, C. Schar, N. Loeb, E. G. Dutton, and G. Konig-Langlo (2013), The global energy balance from a surface perspective, Climate dynamics, 40(11-12), 3107-3134.
World Meteorological Organization (2014), WMO Guide to Meteorological Instruments and Methods of Observation, WMO-No.8, World Meteorological Organization.
Younkin, K., and C. N. Long (2003), Improved correction of IR loss in diffuse shortwave measurements: An ARM value-added product (No. DOE/SC-ARM/TR-009), DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States).
指導教授 王聖翔 審核日期 2018-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明