博碩士論文 105621012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.80.85.76
姓名 鄭詠云(Yung-Yun Cheng)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用正交向量改善系集卡爾曼濾波器之系集空間及其對同化與預報之影響
(Using orthogonal vector to improve the ensemble space of the EnKF and its effect on data assimilation and forecasting)
相關論文
★ 利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事件預報之影響★ 改善區域系集卡爾曼濾波器在颱風同化及預報中的spin-up問題-2008年颱風辛樂克個案研究
★ LETKF加速就位法於颱風同化預報之應用★ 利用系集重新定位法改善颱風路徑預報-2011年南瑪都颱風個案研究
★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009)★ 利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收:以CO2為例
★ OSSE實驗架構下利用系集預報敏感度工具探討觀測對於颱風路徑預報及結構之影響★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報: SoWMEX IOP8 個案分析
★ 利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究★ LAPS 短時(0-6小時)系集降水機率預報之評估與應用
★ 利用辛樂克颱風(2008)建立的觀測系統模擬實驗評估系集奇異向量在颱風系集預報之應用★ 雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMEX IOP#8 個案研究
★ 基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究★ 系集轉換卡爾曼漸進式平滑器在資料同化之應用
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因真實大氣系統的自由度遠大於業務預報上所使用的系集成員數,抽樣誤差與過小的系集離散度限制了系集預報與資料同化系統的表現。而增加系集數需要耗費大量的計算資源,在有限的計算資源中較不易達成。故如何在有限的系集數中,維持合理且足夠的系集離散度,在系集同化與預報的研究中是極具挑戰性的問題。
本篇研究的目的希望在資料同化前,加入新擾動方向至原有的系集當中,藉此讓系集能夠掌握到更多預報誤差的方向,改善分析場以及後續預報。本研究使用Centered Spherical Simplex ensemble法以保持系集平均以及系集離散度不變,並避免背景誤差協方差反矩陣ill-condition的問題,還可以節省計算資源。而實驗中使用三種方法產生新向量,第一種是利用奇異值分解(Singular eigenvalue decomposition, SVD)所產生的null space的奇異向量作為正交向量,第二種則為利用初始系集奇異向量(Initial ensemble singular vector, IESV)與系集空間垂直的部分作為正交向量。最後一種向量則是以系集平均作為新向量,加入到原有系集當中。透過Offline測試與Online同化測試,觀察加入正交向量與系集平均後,新的系集在分析場與後續預報的表現。
實驗結果顯示,加入兩種正交向量與系集平均方向後,分析誤差在不穩定地區以及系集擾動成長最快的地區有所改善,特別是在原本系集無法掌握預報誤差方向的資料同化循環時間,分析誤差的改善更為顯著,而對於整個模式範圍的預報場也有顯著的改善。研究結果顯示,當系集空間受限於樣本誤差,導致無法提供正確預報誤差的資訊時,這三種方法都可以強化系集結構並改善預報表現。
摘要(英) Finite ensemble size cause ensembles underestimate the uncertainty in numerical weather prediction, resulting in under-dispersive ensemble spread and degrading the performance of ensemble forecast/data assimilation. However, increasing ensemble sizes requires large computational costs, which is difficult to achieve in limited computational resources. Therefore, how to maintain reasonable and sufficient ensemble spread in a limited ensemble size is a challenging question in the research of ensemble based forecast/data assimilation.
The purpose of this study is adding new perturbation vectors to the original ensemble, so that the ensemble can capture more directions of the forecast error to improve the analysis state and forecasting. The method of adding the new perturbation vector is to use Centered Spherical Simplex ensemble, which can keep the ensemble mean and ensemble spread same as the original ensemble. Therefore, this study uses three methods to create new perturbation vectors. The first method is to use Singular eigenvalue decomposition (SVD) to find the orthogonal vector. The second method is to use the Initial ensemble singular vector (IESV) to find the vertical direction of the ensemble space and the third method new direction is ensemble mean. By using the Offline test and the Online test observe the performance of the new ensemble in the analysis state and forecasting after adding the orthogonal vector and the direction of ensemble mean.
The experimental results show that after adding the orthogonal vectors and ensemble mean the analysis error has improved in the unstable areas and areas where the ensemble perturbation have been growing fastest. Especially in the data assimilation cycle where the original ensemble space was unable to capture the direction of forecast error and also improvement the performance of analysis state and forecasting for whole model’s domain. The results show that when the ensemble space is constrained by the sample error, which cannot provide accurate forecast error information, these three methods can strengthen the ensemble space structure and improve the performance of the forecast.
關鍵字(中) ★ 資料同化
★ 系集卡爾曼濾波器
★ 正交向量
★ 系集空間
★ 系集奇異向量
★ 奇異值分解
關鍵字(英) ★ Data Assimilation
★ Ensemble Kalman Filter
★ Orthogonal vector
★ Ensemble space
★ Ensemble Singular Vector
★ Singular Value Decomposition
★ Centered Spherical Simplex Ensemble
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 vii
第一章 緒論 1
1-1 背景與文獻回顧 1
1-1-1 系集預報與擾動技術的發展 1
1-1-2 資料同化系統的發展 3
1-2 研究動機 5
第二章 研究方法 7
2-1 Lorenz 96模式 7
2-2 系集資料同化系統 7
2-2-1 局地化系集轉換卡爾曼濾波器(Local Ensemble Transform Kalman Filter, LETKF) 8
2-3 Centered Spherical Simplex Ensemble (CSSE) 10
2-4 奇異值分解法(Singular Value Decomposition, SVD) 12
第三章 實驗設定 17
3-1 觀測系統模擬實驗簡介 17
3-1-1 觀測系統模擬實驗設計 17
3-1-2 真實場設定 18
3-1-3 控制組設定 18
3-2 正交向量實驗介紹 18
3-2-1 奇異值為零的奇異向量(Orth_vector from SVD) 18
3-2-2 與系集空間正交的初始系集奇異向量(Orthogonal IESV1) 20
3-2-3 系集平均 20
3-3 正交向量實驗介紹 21
3-3-1 實驗組 21
3-3-2 Offline測試流程 22
3-3-3 Online測試流程 23
第四章 實驗結果與討論 25
4-1 控制組表現 25
4-1-1 控制組整體表現 25
4-1-2 控制組在最大預報誤差地區的表現 26
4-1-3 控制組在最終系集奇異向量最大地區的表現max(FESV1) 28
4-2 Offline 測試實驗表現 29
4-2-1 整體表現 30
4-2-2 最大預報誤差的地區 31
4-2-3 最終系集奇異向量最大地區的表現max(FESV1) 33
4-3 Online 測試實驗表現 34
4-3-1 整體表現 34
4-3-2 原本最大預報誤差的地區 36
4-3-3 控制組的最終系集奇異向量最大地區的表現max(FESV1) 37
第五章 總結與未來展望 39
5-1 總結 39
5-2 未來展望 41
參考文獻 43
附表 47
附圖 57
參考文獻 張楚珺(2011),利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收: 以CO2為例,國立中央大學大氣科學研究所碩士論文,84頁
吳品穎(2014),利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究,國立中央大學大氣科學研究所碩士論文,82頁
王簾傑(2016),利用辛樂克颱風(2008)建立的觀測系統模擬實驗評估系集奇異向量在颱風系集預報之應用
鄭翔文(2017),雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMX IOP#8個案研究,80頁
林哲暉(2018),系集轉換卡爾曼漸進式平滑器在資料同化之應用,90頁
張逸品(2018),基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究,94頁
Anderson, and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758.
──, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. Wea. Rev., 129, 2884–2903.
Bishop, C. H. and Toth, Z. 1999. Ensemble transformation and adaptive observations. J. Atmos. Sci. 56, 1748-1765
Buizza R., J. Tribbia, F. Molteni, and T. Palmer, 1993: Computation of optimal unstable structures for a numerical weather prediction model. Tellus, 45A, 388-407
──, and T. N. Palmer, 1995: The singular vector structure of the atmospheric general circulation. J. Atmos. Sci., 52, 1647–1681
Burgers, G., P. J. van Leeuwen, and Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724.
Enomoto, T., Yamane, S. and Ohfuchi, W. 2006. Simple sensitivity analysis using ensemble forecast. In: Proceedings of Third Workshop on Mechanisms of Climate Variation and its Predictability, Disaster Prevention Research Institute, Kyoto University, Kyoto, pp. 40_43. (In Japanese.).
──, S. Yamane, W. Ohfuchi, 2015: Simple sensitivity analysis using ensemble forecasts. J. Meteor. Soc. Japan, 93, 199-213
Carrassi, A., A. Trevisan, L. Descamps, O. Talagrand, and F. Uboldi, Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable subspace: A comparison with the EnKF, Nonlinear Process. Geophys, 2008, 15. 503-521.
Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739–759
Gene H. Golub, Michacel W. Mahoney, Petros Drineas, and Lek-Heng Lim, 2006.: Bridging the Gap Between Numerical Linear Algebra, Theoretical Computer Science, and Data Applications, SIAM News, 39, No. 8,
Leith, C. E., 1974: Theoretical Skill of Monte-Carlo Forecasts. Mon. Wea. Rev., 102, 409–418.
Lorenz, E. N., 1963: Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130–142.
──, 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3), 321–333.
──, E. N., 1995: Predictability: A problem partly solved. In Seminar on Predictability, volume Vol. I,ECMWF, Reading, UK, 1–18.
Hoffman, R. N. and Kalnay, E., 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus A, 35A, 100–118.
Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–1242.
Hunt, E. J. K., and I. Szunyogh, 2007:Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126.
Montani, A., R. Buizza, and A. Thorpe, 1996: Singular vector calculations for cases of cyclogenesis in the North Atlantic storm-track. Proceedings of the 7th Conference on mesoscale processes, 9-13 September 1996, University of Reading, Reading, UK, pp 617.
Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2002: Exploiting local low dimensionality of the atmospheric dynamics for efficient ensemble Kalman filtering.
──, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.
Patil, D. J., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001b: Identification of local low dimensionality of atmospheric dynamics. Submitted to Tellus,86.,5878-5881
Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317– 2330.
──,1997: Ensemble Forecasting at NCEP and the Breeding Method. Mon. Wea. Rev., 125, 3297–3319.
Wang, X., C. H. Bishop, and S. J. Julier, 2004, Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble?: Monthly Weather Review, 132, 1590–1605
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed Observations. Mon. Wea. Rev., 130, 1913–1924.
Yang, S-C., Baker, D., Li, H., Huff, M., Nagpal, G. and co-authors. 2006.Data assimilation as synchronization of truth and model: experimentswith the 3-variable Lorenz system.J. Atmos. Sci.63, 2340–2354.
──, M. Corazza, A. Carrassi, E. Kalnay, and T. Miyoshi, 2009a: Comparison of ensemble-based and variational-based data assimilation schemes in a quasi-geostrophic model. Mov. Wea. Rev.,137, 693- 709.
──, E. Kalnay and T. Enomoto, 2015: Ensemble Singular Vectors and their use as additive inflation in EnKF, Tellus A, 67, 26536.

Ying, Y., and F. Zhang, 2015: An adaptive covariance relaxation method for ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 141, 2898–2906
指導教授 楊舒芝(Shu-Chih Yang) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明