博碩士論文 105621013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:54.226.102.115
姓名 陳映潔(Ying-Chieh Chen)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 氣膠對臺灣北部暖雲微物理和毛雨的影響
(Aerosol impacts on warm cloud microphysics and drizzle over the northern Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-7-31以後開放)
摘要(中) 氣膠為影響氣候的重要因子,透過輻射和微物理效應改變雲的生命週期和降水分布。在定量的水氣條件下,增加雲凝結核的數目會導致雲滴數量濃度增加、雲滴體積變小、抑制暖雲底部的降水,使雲的生命週期變長,進一步改變降水型態。然而目前的全球模式中輻射驅動力在雲與氣膠交互作用(Aerosol-Cloud Interactions, ACI)的估計中仍有較高的不確定性,且近年來的研究顯示,全球模式明顯地高估毛雨(Drizzle)發生的頻率,因此本篇研究透過整合2005年至2017年10/15至11/30期間的地面觀測資料和衛星資料,對氣膠、雲的光學特性和降水特性進行長期分析,以探討氣膠、雲與降水的交互作用(Aerosol-Cloud-Precipitation Interactions, ACP) ,試圖了解當氣膠含量增加時,是否會抑制降水,以及對毛雨發生頻率的影響為何。
研究結果顯示,臺灣北部人為活動較頻繁的區域(桃園地區),其暖雲的特徵大多屬於薄且破碎的雲,且在定量的雲水光程(Cloud Water Path, CWP)下,當氣膠含量增加,會導致雲有效半徑(Cloud Effective Radius, CER)減少、雲光學厚度(Cloud Optical Thickness, COT)增加以及雲頂溫度(Cloud Top Temperature, CTT)降低,此結果與氣膠間接效應一致。利用Feingold et al. (2001)所提出計算氣膠對雲微物理影響程度的公式,並以ACI index (ACI值)做為表示,比較污染較低的海洋及污染較高的陸地區域,結果顯示在150 ? CWP < 297 (g m-2)的雲水光程中,乾淨區域的ACI值為0.09、污染區域的ACI值為0.06,說明氣膠間接效應在乾淨的地區更為敏感,可能因較高的氣膠濃度使雲與氣膠交互作用趨於飽和,導致對污染區域的影響程度降低。在氣膠、雲與降水的交互作用中,氣膠含量增加會改變雲的生命週期,更多的雲凝結核將重新分配雲中的水含量,使雲滴數量增加、雲滴有效半徑減少,降低碰撞結合率進而抑制降水,並可能造成降水時間的延遲,且改變降水型態。搭配分析雨滴粒徑觀測資料指出,在高氣膠濃度的條件下,會降低毛雨的發生頻率,但在小於等於1 mm hr -1的降水情境下,高氣膠濃度驅使雨滴往小的雨滴粒徑(雨滴粒徑0.359 mm)移動,增加毛雨滴的出現。本研究利用長期地面及衛星資料分析,有助於初步了解北臺灣在氣膠環境的變異下,潛在對於環境及水循環的衝擊影響,並應用於未來氣膠-雲-降水交互作用之觀測策略規劃。
摘要(英) Aerosols are an important factor influencing the climate. They can alter cloud lifecycles and precipitation distributions through radiative and microphysical effects. An increase in cloud condensation nuclei number causes an increase in cloud droplet concentration and a decrease in cloud droplet size for fixed cloud water content. Whereby the reduction in cloud droplet size suppress the precipitation at the bottom of the warm cloud, leads to the increase of the cloud lifetimes, and further changing the precipitation pattern. However, the estimate of the radiative forcing in aerosol-cloud interactions (ACI) still has high uncertainty in the current global models. Moreover, recent studies showed that global models significantly overestimate the occurrence of drizzle events. In order to understand such aerosol-cloud-precipitation interactions (ACP), we through integrate the data from surface observations and satellite data and analyze aerosol, cloud optical and precipitation properties between 10/15 and 11/30 from 2005 to 2017. This study attempts to understand whether an increase in aerosol loading will suppress the precipitation, and how does an increase in aerosol loading impact on the frequency of drizzle events.
The results indicate that in northern Taiwan where human activities are more frequent (Taoyuan area), the characteristics of warm clouds are mostly thin and broken. In the fixed cloud water path (CWP), an increase in aerosol loading leads into cloud effective radius (CER) decrease, cloud optical thickness (COT) increase, cloud fraction (CF) increase, cloud top temperature (CTT) decrease, and this result shows in agreement to the aerosol indirect effects. Using the formula for calculating the ACI index of the influence of aerosol on cloud microphysical properties proposed by Feingold et al. (2001). Comparing with the less polluted oceans and the more polluted land areas, the result demonstrates that for cloud water path in the group 9 (150 ? CWP < 297), the ACI index of the clean area is 0.09, and the polluted area is 0.06, indicating that aerosol indirect effects are more sensitive in the clean area. It might be that the ACI is saturated under large aerosol concentrations, leading to lower ACI index in the polluted area lower. In the aerosol-cloud-precipitation interactions, an increase in aerosol loading could change cloud lifetimes. Greater NCCN redistributes cloud water to more numerous and smaller droplets, reducing collision-coalescence rates, which will suppress the precipitation and may delay the precipitation time. It also could change the precipitation pattern. Combining the analysis of raindrop size observations indicates that when aerosol loading is higher, it results in a decrease in the frequency of drizzle events. However, in the scenario of precipitation less than or equal to 1 mm hr -1, high aerosol concentration drives raindrops to move toward smaller drop sizes and increase the appearance of the drizzle drops. This study uses the analysis of long-term surface and satellite observation data to understand how the variation in the aerosol environment in northern Taiwan can potentially impact the environment and the water cycle. These preliminary results can be applied to observational strategy planning in the future about aerosol-cloud-precipitation interactions.
關鍵字(中) ★ 氣膠輻射效應
★ 氣膠-雲-降水交互作用
關鍵字(英) ★ aerosol radiative effects
★ aerosol-cloud-precipitation interactions
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
一、 前言 1
1-1 研究動機 1
1-2 研究目的 2
二、 文獻回顧 4
2-1 氣膠輻射效應 4
2-2 氣膠-雲-降水交互作用之研究回顧 5
三、 研究方法 8
3-1 衛星觀測資料及再分析資料 8
3-1-1 MODIS氣膠與雲觀測資料 8
3-1-2 TRMM降雨觀測資料 9
3-1-3 ECMWF再分析資料 10
3-2 地面觀測資料 11
3-2-1 環保署空氣品質監測網PM2.5資料 11
3-2-2 中大測候站之撞擊式雨滴譜儀觀測資料 12
3-3 資料分析時間之選取 12
3-4 氣膠資料之分析方法 13
3-4-1 氣膠參數之選取 13
3-4-2 乾淨日與污染日之定義 15
3-5 雲資料之分析方法 15
3-5-1 暖雲資料之選取 15
3-5-2 雲與氣膠交互作用之計算 16
3-5-3 雲水光程之分類 16
3-6 降水資料之分析方法 17
四、 結果與討論 18
4-1 資料之長期分析 18
4-1-1 長期衛星資料分析 18
4-1-2 長期地面觀測資料之分析 20
4-2 雲與氣膠之交互作用 21
4-2-1 氣膠對雲微物理參數之影響 21
4-2-2 不同污染程度下氣膠對雲微物理之影響 24
4-2-3 降水雲與非降水雲中氣膠對雲微物理之影響 24
4-2-4 使用不同氣膠參數計算ACI之差異 25
4-2-5 不同區域中氣膠對雲微物理之影響 26
4-3 氣膠-雲-降水之交互作用之初探 26
4-3-1 氣膠對雨滴粒徑分布的影響 27
4-3-2 氣膠對降水量的影響 28
4-3-3 氣膠對雲生命週期的影響 28
五、 總結與未來展望 30
5-1 總結 30
5-2 未來展望 32
參考文獻 33
表 39
圖 43
參考文獻 行政院環境保護署,2018:空氣品質監測網背景說明。https://taqm.epa.gov.tw/taqm/tw/b0101.aspx (取用日期:2018.06)。
行政院環境保護署,2018:空氣品質監測網監測儀器。https://taqm.epa.gov.tw/taqm/tw/b0102-3.aspx (取用日期:2018.06)。
行政院環境保護署環境檢測所,2000,“空氣中粒狀污染物自動檢測方法-貝他射線衰減法”,NIEA A206.10C。
蔣育真 (2010), 2009 年台灣梅雨季雨滴粒徑分佈特性之比較研究; Comparison Studies on the Characteristic of Raindrop Size Distribution During 2009 Taiwan Mei-yu Season, 國立中央大學。
Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens and O. B. Toon (2004), The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432(7020), 1014.
Ackerman, A. S., O. Toon, D. Stevens, A. Heymsfield, V. Ramanathan and E. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288(5468), 1042-1047.
Albrecht, B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923), 1227-1231.
Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert and A. S. Frisch (1995), The Atlantic stratocumulus transition experiment—ASTEX, Bulletin of the American Meteorological Society, 76(6), 889-904.
American Meteorological Society, 1959: Glossary of Meteorology, American Meteorological Society, 45 Beacon St. Boston, MA, 638pp.
Andreae, M. O., D. Rosenfeld, P. Artaxo, A. Costa, G. Frank, K. Longo and M. Silva-Dias (2004), Smoking rain clouds over the Amazon, science, 303(5662), 1337-1342.
Berrisford, P., D. Dee, P. Poli, R. Brugge, K. Fielding, M. Fuentes, P. Kallberg, S. Kobayashi, S. Uppala and A. Simmons (2011), The ERA-Interim archive Version 2.0, ERA Report Series 1, ECMWF, Shinfield Park, Reading, UK, 13177.
Bony, S., R. Colman, V. M. Kattsov, R. P. Allan, C. S. Bretherton, J.-L. Dufresne, A. Hall, S. Hallegatte, M. M. Holland and W. Ingram (2006), How well do we understand and evaluate climate change feedback processes?, Journal of Climate, 19(15), 3445-3482.
Breon, F.-M., D. Tanre and S. Generoso (2002), Aerosol effect on cloud droplet size monitored from satellite, Science, 295(5556), 834-838.
Bretherton, C., R. Wood, R. George, D. Leon, G. Allen and X. Zheng (2010), Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20 S during VOCALS-REx, Atmospheric Chemistry and Physics, 10(21), 10639-10654.
Charlson, R. J., S. Schwartz, J. Hales, R. D. Cess, J. J. Coakley, J. Hansen and D. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science, 255(5043), 423-430.
Comstock, K. K., R. Wood, S. E. Yuter and C. S. Bretherton (2004), Reflectivity and rain rate in and below drizzling stratocumulus, Quarterly Journal of the Royal Meteorological Society, 130(603), 2891-2918.
Costantino, L. and F. M. Breon (2010), Analysis of aerosol?cloud interaction from multi?sensor satellite observations, Geophysical Research Letters, 37(11).
Feingold, G., W. L. Eberhard, D. E. Veron and M. Previdi (2003), First measurements of the Twomey indirect effect using ground?based remote sensors, Geophysical Research Letters, 30(6).
Feingold, G., I. Koren, H. Wang, H. Xue and W. A. Brewer (2010), Precipitation-generated oscillations in open cellular cloud fields, Nature, 466(7308), 849-852.
Feingold, G., L. A. Remer, J. Ramaprasad and Y. J. Kaufman (2001), Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey′s approach, Journal of Geophysical Research: Atmospheres, 106(D19), 22907-22922.
Garrett, T., C. Zhao, X. Dong, G. Mace and P. Hobbs (2004), Effects of varying aerosol regimes on low?level Arctic stratus, Geophysical Research Letters, 31(17).
Gibson, J., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura and E. Serrano (1999), ECMWF re-analysis project report series, 1, ERA-15 description (version 2)Rep., technical report, Eur. Cent. for Medium-Range Weather Forecasts, Reading, UK.
Giorgi, F., X. Bi and Y. Qian (2003), Indirect vs. direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry/aerosol model, Climatic Change, 58(3), 345-376.
Grandey, B. and P. Stier (2010), A critical look at spatial scale choices in satellite-based aerosol indirect effect studies, Atmospheric Chemistry and Physics, 10(23), 11459-11470.
Guo, H., J. C. Golaz and L. Donner (2011), Aerosol effects on stratocumulus water paths in a PDF?based parameterization, Geophysical Research Letters, 38(17).
Haywood, J. and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Reviews of geophysics, 38(4), 513-543.
Huang, Y., W. L. Chameides and R. E. Dickinson (2007), Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia, Journal of Geophysical Research: Atmospheres, 112(D3).
Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman and E. F. Stocker (2007), The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, Journal of hydrometeorology, 8(1), 38-55.
Hyslop, N. P. (2009), Impaired visibility: the air pollution people see, Atmospheric Environment, 43(1), 182-195.
Intergovernmental Panel on Climate Change (IPCC) (1995), Climate Change 1994, Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios.
Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007, Working Group I Contribution to the IPCC Fourth Assessment Report: Changes in Atmospheric Constituents and in Radiative Forcing.
Intergovernmental Panel on Climate Change (IPCC) (2013), Climate Change 2013, Working Group I Contribution to the IPCC Fifth Assessment Report: The Physical Science Basis Summary for Policymakers.
Jones, T. A., S. A. Christopher and J. Quaas (2009), A six year satellite-based assessment of the regional variations in aerosol indirect effects, Atmospheric Chemistry and Physics, 9(12), 4091-4114.
Kiehl, J. and B. Briegleb (1993), The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science, 260(5106), 311-314.
Kim, B. G., M. A. Miller, S. E. Schwartz, Y. Liu and Q. Min (2008), The role of adiabaticity in the aerosol first indirect effect, Journal of Geophysical Research: Atmospheres, 113(D5).
Kruger, O. and H. Grasl (2002), The indirect aerosol effect over Europe, Geophysical Research Letters, 29(19).
Kummerow, C., W. Barnes, T. Kozu, J. Shiue and J. Simpson (1998), The tropical rainfall measuring mission (TRMM) sensor package, Journal of atmospheric and oceanic technology, 15(3), 809-817.
Lohmann, U. and J. Feichter (2005), Global indirect aerosol effects: a review, Atmospheric Chemistry and Physics, 5(3), 715-737.
Lu, M. L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan and J. H. Seinfeld (2007), The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol?cloud relationships in marine stratocumulus, Journal of Geophysical Research: Atmospheres, 112(D10).
Lu, M. L., A. Sorooshian, H. H. Jonsson, G. Feingold, R. C. Flagan and J. H. Seinfeld (2009), Marine stratocumulus aerosol?cloud relationships in the MASE?II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus, Journal of Geophysical Research: Atmospheres, 114(D24).
Mann, J. A., J. Christine Chiu, R. J. Hogan, E. J. O′Connor, T. S. L′Ecuyer, T. H. Stein and A. Jefferson (2014), Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments, Journal of Geophysical Research: Atmospheres, 119(7), 4136-4148.
McComiskey, A., G. Feingold, A. S. Frisch, D. D. Turner, M. A. Miller, J. C. Chiu, Q. Min and J. A. Ogren (2009), An assessment of aerosol?cloud interactions in marine stratus clouds based on surface remote sensing, Journal of Geophysical Research: Atmospheres, 114(D9).
Menon, S., A. D. Del Genio, Y. Kaufman, R. Bennartz, D. Koch, N. Loeb and D. Orlikowski (2008), Analyzing signatures of aerosol?cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect, Journal of Geophysical Research: Atmospheres, 113(D14).
Menon, S., J. Hansen, L. Nazarenko and Y. Luo (2002), Climate effects of black carbon aerosols in China and India, Science, 297(5590), 2250-2253.
Myhre, G., F. Stordal, M. Johnsrud, Y. Kaufman, D. Rosenfeld, T. Storelvmo, J. E. Kristjansson, T. K. Berntsen, A. Myhre and I. S. Isaksen (2007), Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models, Atmospheric Chemistry and Physics, 7(12), 3081-3101.
Nakajima, T., A. Higurashi, K. Kawamoto and J. E. Penner (2001), A possible correlation between satellite?derived cloud and aerosol microphysical parameters, Geophysical Research Letters, 28(7), 1171-1174.
Ou, S., K. Liou, N. Hsu and S. Tsay (2012), Satellite remote sensing of dust aerosol indirect effects on cloud formation over Eastern Asia, International journal of remote sensing, 33(22), 7257-7272.
Penner, J. E., M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy and J. Nganga (2001), Aerosols, their direct and indirect effects, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited, pp. 289-348, Cambridge University Press.
Pincus, R. and M. B. Baker (1994), Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature, 372(6503), 250.
Quaas, J., Y. Ming, S. Menon, T. Takemura, M. Wang, J. E. Penner, A. Gettelman, U. Lohmann, N. Bellouin and O. Boucher (2009), Aerosol indirect effects–general circulation model intercomparison and evaluation with satellite data, Atmospheric Chemistry and Physics, 9(22), 8697-8717.
Ramanathan, V., P. Crutzen, J. Kiehl and D. Rosenfeld (2001), Aerosols, climate, and the hydrological cycle, science, 294(5549), 2119-2124.
Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustine, J. Haywood, G. Myhre, T. Nakajima, G. Shi and S. Solomon (2001), Radiative forcing of climate, Climate change, 349.
Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophysical research letters, 26(20), 3105-3108.
Rosenfeld, D., S. Sherwood, R. Wood and L. Donner (2014), Climate effects of aerosol-cloud interactions, Science, 343(6169), 379-380.
Saponaro, G., P. Kolmonen, L. Sogacheva, E. Rodriguez, T. Virtanen and G. d. Leeuw (2017), Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations, Atmospheric Chemistry and Physics, 17(4), 3133-3143.
Schwartz, J. and L. M. Neas (2000), Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren, Epidemiology, 11(1), 6-10.
Sekiguchi, M., T. Nakajima, K. Suzuki, K. Kawamoto, A. Higurashi, D. Rosenfeld, I. Sano and S. Mukai (2003), A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters, Journal of Geophysical Research: Atmospheres, 108(D22).
Soden, B. J. and G. A. Vecchi (2011), The vertical distribution of cloud feedback in coupled ocean?atmosphere models, Geophysical Research Letters, 38(12).
Sporre, M., E. Swietlicki, P. Glantz and M. Kulmala (2014), A long-term satellite study of aerosol effects on convective clouds in Nordic background air, Atmospheric Chemistry and Physics, 14(4), 2203-2217.
Stephens, G. L., T. L′Ecuyer, R. Forbes, A. Gettelmen, J. C. Golaz, A. Bodas?Salcedo, K. Suzuki, P. Gabriel and J. Haynes (2010), Dreary state of precipitation in global models, Journal of Geophysical Research: Atmospheres, 115(D24).
Stevens, B., D. H. Lenschow, G. Vali, H. Gerber, A. Bandy, B. Blomquist, J.-L. Brenguier, C. Bretherton, F. Burnet and T. Campos (2003), Dynamics and chemistry of marine stratocumulus—DYCOMS-II, Bulletin of the American Meteorological Society, 84(5), 579-594.
Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima and T. Nakajima (2005), Simulation of climate response to aerosol direct and indirect effects with aerosol transport?radiation model, Journal of Geophysical Research: Atmospheres, 110(D2).
Tokay, A., A. Kruger and W. F. Krajewski (2001), Comparison of drop size distribution measurements by impact and optical disdrometers, Journal of Applied Meteorology, 40(11), 2083-2097.
Twomey, S. (1974), Pollution and the planetary albedo, Atmospheric Environment (1967), 8(12), 1251-1256.
US EPA “Revised Requirements for Designation of Reference and Equivalent Methods for PM2.5 and Ambient Air Quality Surveillance for Particulate Matter; Final Rule, 40CFR Parts 53, Table C-4. Test Specifications for PM10 and PM2.5 Methods” July 18, 1997.
VanZanten, M., B. Stevens, G. Vali and D. Lenschow (2005), Observations of drizzle in nocturnal marine stratocumulus, Journal of the atmospheric sciences, 62(1), 88-106.
Wang, H., P. Rasch and G. Feingold (2011), Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei, Atmospheric Chemistry and Physics, 11(9), 4237-4249.
Wang, M., S. Ghan, M. Ovchinnikov, X. Liu, R. Easter, E. Kassianov, Y. Qian and H. Morrison (2011), Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF, Atmospheric Chemistry and Physics, 11(11), 5431.
Wang, S. H., N. H. Lin, M. D. Chou, S. C. Tsay, E. J. Welton, N. C. Hsu, D. M. Giles, G. R. Liu and B. N. Holben (2010), Profiling transboundary aerosols over Taiwan and assessing their radiative effects, Journal of Geophysical Research: Atmospheres, 115(D7).
Warner, J. and S. Twomey (1967), The production of cloud nuclei by cane fires and the effect on cloud droplet concentration, Journal of the atmospheric Sciences, 24(6), 704-706.
Wood, R. (2005), Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure, Journal of the atmospheric sciences, 62(9), 3011-3033.
Wood, R., C. Mechoso, C. Bretherton, R. Weller, B. Huebert, F. Straneo, B. Albrecht, H. Coe, G. Allen and G. Vaughan (2011), The VAMOS ocean-cloud-atmosphere-land study regional experiment (VOCALS-REx): goals, platforms, and field operations, Atmospheric Chemistry and Physics, 11(2), 627-654.
Yuan, T., Z. Li, R. Zhang and J. Fan (2008), Increase of cloud droplet size with aerosol optical depth: An observation and modeling study, Journal of Geophysical Research: Atmospheres, 113(D4).
指導教授 王聖翔 林能暉(Sheng-Hsiang Wang Neng-Huei Lin) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明