博碩士論文 105621015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:166 、訪客IP:3.129.13.201
姓名 陳怡蒨(Yi-Chien Chen)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
(Moisture and Energy Transports by Tropical Convection: Contrast between Deep and Shallow Convective Modes)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 超級MJO事件之濕靜能收支分析
★ 全球暖化下季風亞洲降水的變化★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化
★ MJO對南海颱風活動之影響★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?
★ Changes of the Hadley Cell During the Last Four Decades★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation
★ Changes of Tropical Tropopause in Response to Global Warming★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討
★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming
★ Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study
★ The role of shallow convection in tropical circulation: a simple analytic approach★ Madden-Julian Oscillation的大氣雲–輻射效應在全球暖化下的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用ERA-Interim氣象觀測再分析資料以及TRMM的衛星降水資料來探討氣候態平均下,熱帶地區深、淺對流的水氣與能量輸送及其物理機制。觀察熱帶地區主要的對流上升和下沉區,分析氣壓垂直速度來檢驗對流結構,並使用水氣、乾靜能和濕靜能收支,最終,我們在熱帶地區確定了四種類型的對流。
在熱帶地區的四種類型對流結構中,第一斜壓模和第二斜壓模各有兩種。第一斜壓模為兩層結構,空氣低層輻合到對流中心,在高空輻散;第二斜壓模為三層結構,空氣在中層輻合(或輻散)並在下層和上層輻散(或輻合)。進一步研究不同類型的對流在氣柱中輸送水氣和濕靜能量(MSE)中的作用,我們發現第一斜壓結構的對流在水氣和MSE輸送之間表現出不同的趨勢,雖然在第一斜壓模中兩種類型的對流都傾向於濕化氣柱,但在傳輸MSE時常表現出相反的結果:Top-heavy結構(1a Type)傾向輸出氣柱MSE,導致大氣趨向穩定;Bottom-heavy結構(1b Type)傾向輸入氣柱MSE,導致大氣趨向不穩定。與此相反,第二斜壓模中水氣和MSE輸送呈現一致趨勢:空氣在中層輻散(2a Type)的結構中,水氣和MSE都是輸入的,導致大氣不穩定且濕化氣柱;空氣在中層輻合(2b Type)的結構中,水氣和MSE都是輸出的,導致大氣穩定且乾化氣柱。最後,我們分析水氣收支中各項對降水的貢獻,並針對這四種對流結構來探討熱帶對流區的降水種類。
摘要(英) In this thesis, we identified dominant modes of tropical convection based on the ERA-interim atmospheric data as well as the TRMM precipitation data and examined their roles in transporting moisture and energy in a climatological sense. Based on the technique of EOF decomposition and reconstruction, four major types of convection are identified in the Tropics. The first two types of convection exhibit a two-layer, the first baroclinic structure, with air converging into the convective center at low-levels and diverging aloft. The other two types of convection show a three-layer, the second baroclinic structure, with air converging (or diverging) at mid-levels and diverging (or converging) below and aloft. The roles of different types of convection in transporting atmospheric column moisture and moist static energy (MSE) are also examined. We find that the first two types of convection exhibit distinct tendencies between moisture and MSE transports, i.e., while both types of convection tend to moisten the atmospheric column, they show opposite signs in transporting MSE. A top-heavy convection exports the column MSE, resulting in a stabilization of the atmosphere; while a bottom-heavy convection imports the column MSE, resulting in a destabilization of the atmosphere. In contrast, the last two types of convection show a consistent tendency between moisture and MSE transports. That is, the convection with air diverging at mid-levels (positive mode) imports both the column moisture and MSE, resulting in a rapid destabilization of the atmosphere; while the convection with air converging at mid-levels exports both the column moisture and MSE, resulting in a quick stabilization of the atmosphere.
關鍵字(中) ★ 濕靜能
★ 深對流
★ 淺對流
關鍵字(英) ★ Moist Static Energy
★ Top-heavy convection
★ Bottom-heavy convection
論文目次 摘要....................................................i
Abstract...............................................ii
Contents...............................................iii
List of Figures........................................iv
List of Tables.........................................ix
Chapter 1 Introduction.................................1
Chapter 2 Data and Methodology.........................4
2.1 Data.............................................4
2.2 Moisture, dry-static and moist static energy budgets .......................................................4
Chapter 3 Energy Budgets Analyses......................8
Chapter 4 Modes of Tropical Convection.................14
4.1 Decomposition of convection using EOF method.....14
4.2 Modes of convection inside ITCZ..................15
4.3 Modes of convection outside ITCZ.................18
Chapter 5 Roles of different types of convection.......35
5.1 Four types of convection.........................35
5.2 Contribution to precipitation....................36
Chapter 6 Conclusion and discussion....................44
Appendix...............................................48
References.............................................54
參考文獻 Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophy. Res. Lett., 33 (17), doi:10.1029/2006GL026672.
Back, L. E., and C. S. Bretherton, 2009: On the Relationship between SST Gradients, Boundary Layer Winds, and Convergence over the Tropical Oceans. J.Clim., 22,4182-4196.
Back, L. E., Z. Hansen, and Z. Handlos, 2017: Estimating vertical motion profile top-heaviness: reanalysis compared to satellite-based observations and stratiform rain fraction. J. Atmos. Sci., 74, 855–864.
Bui, H. X., J.-Y. Yu, and C. Chou, 2016: Impacts of vertical structure of large-scale vertical motion in tropical climate: Moist static energy framework. J. Atmos. Sci., 73 (11), 4427–4437, doi:10.1175/JAS-D-16-0031.1.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.
Gill, A. E., 1980: Some Simple solution for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447-462.
Houze, R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425-461.
Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179-2196.


Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12 (8), 2397–2418, doi:10.1175/1520-0442(1999)012.
Lindzen, R. S., and S. Nigam, 1987: On the Role of Sea Surface Temperature Gradients in Forcing Low-Level Winds and Convergence in the Tropics. J. Atmos. Sci., 44, 2418-2436.
Masunaga, H., and T. S. L’Ecuyer, 2014: A mechanism of tropical convection inferred from observed variability in the moist static energy budget. J. Atmos. Sci., 71, 3747–3766.
Neelin, J. D., and I. M. Held, 1987: Modeling Tropical Convergence Based on the Moist Static Energy Budget. Mon.Wea. Rev., 115, 3-12.
Srinivasan, J., and G. L. Smith, 1996: The Role of Heat and Moist Static Energy in Tropical Convergence Zones. Mon. Wea. Rev., 124, 2089-2099.
Yanai, M., and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. Meteorological Monographs, Vol. 24, No. 46, The Representation of Cumulus Convection in Numerical Models, 39–62, doi:10.1007/978-1-935704-13-3-4.
Yano, J. I., and R. Plant, 2012: Interactions between shallow and deep convection under a finite departure from convective quasi equilibrium. J. Atmos. Sci., 69, 3463-3470.
指導教授 余嘉裕(Jia-Yuh Yu) 審核日期 2018-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明