博碩士論文 105621018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.222.23.119
姓名 林哲玄(Che-Hsuan Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用AERONET資料解析中南半島地區氣膠種類及成分
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 氣膠對臺灣北部暖雲微物理和毛雨的影響
★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers★ 氣膠對臺灣中部平原夏季降水日變化之影響
★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究
★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程
★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例★ 利用向日葵8號衛星及單層輻射模式反演地面輻射量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中南半島地區是全球生質燃燒活動的活躍地區之一,生質燃燒產生大量人為氣膠中,吸光性氣膠,主要為黑碳(Black Carbon; BC)與褐碳(Brown Carbon; BrC),影響該地區氣膠光學特性及輻射收支。本研究透過氣膠觀測網(AErosol RObotic NETwork; AERONET)觀測及反演產品進行分析,瞭解該地區氣膠光學特性及氣膠成分,同時使用MODIS火點資料,瞭解不同時空中生質燃燒活躍程度,並分析該狀態下的氣膠特徵。中南半島地區所架設的AERONET站,有部分已經累計有10年左右的觀測,並且AERONET太陽光度計會進行定期且標準化的校正程序,在不同測站間進行氣膠光學特性及成分比較時,各站儀器間的差異會降至最低。因此本研究將透過AERONET氣膠光學產品資料分析,以進一步瞭解中南半島氣膠光學特性及成分特徵。
研究方法參照前人研究所提出的主要氣膠種類群落分析及氣膠成分反演法,前者透過消光埃指數(EAE)對單次散射反照率(SSA)的群落作為主要氣膠種類的判別,後者則是透過折射指數(Refractive index; RI)及Maxwell-Garnett 模式反演最佳成分比率。在氣膠光學特性結果當中,中南半島北方氣膠光學厚度值在2及3月最高(0.8左右),7月過後數值較低(0.4以下),細顆粒佔比(FMF)在Chiang Mai站 10月至4月高,其餘月份低;各站的SSA約在0.8-0.9以2、3月最低;而AOD及FMF在中南半島北方相對於南方而言整體數值高,SSA數值較低,氣膠特性在地理空間分布以北方消光程度大,以及偏向吸光性的細顆粒,位置愈向南方,氣膠較以粗顆粒氣膠佔多數,且整體氣膠量較北方來得少;同樣的結果反映在各站的氣膠粒徑分布中,乾季以偏向細顆粒氣膠體積多於粗顆粒氣膠。以上現象透過主要氣膠群落分析,結果1及4月接近存在城市/工業類氣膠及細顆粒的混合類氣膠的群落,3月則分布接近生質燃燒氣膠,AOD大於第三四分位數情形下,有資料密集分布於生質燃燒氣膠類別。進一步分析氣膠成分的反演結果,並與化學採樣結果相互比較,兩者的相關係數為0.6。在中南半島北部方面,BC氣膠佔比在月分布上,2、3月最高(5~6%在CM站)也對應SSA偏低之情形,值得一提的是,3月份並非觀測到最高的BC占比(也就是最低的SSA),主要可能原因為氣流來源不同,3月可能受到當地生質燃燒與境外印度緬甸空氣塊傳輸雙重影響,而5月雨季開始,生質燃燒活動降低,沙塵類氣膠佔的比例普遍上升(粗顆粒比例變多),造成FMF的下降。相較之下,中南半島南方(Bac Lieu站)氣膠成分多數月分由沙塵類氣膠為主導,屬於自然源氣膠粗顆粒特性。
分析2014年及2015年3月,DAK站與CM站的AOD高峰值日及非峰值日的氣膠特徵,吾人發現,在非峰值日CM站及DAK站的氣膠光學特性趨勢一致,表示氣膠分布空間均勻;高峰值日,兩站的氣膠光學特性有所不同,AOD趨勢在DAK站為上午低下午高,CM站則是趨勢相反,推論CM上午的AOD高值是由前一天污染物累積,並於峰值當日觀測而得,而DAK則是在下午高生質燃燒活動時,觀測出高值,兩站的觀測上時序變化差異,推論是因為測站所在海拔高度以及距離生質燃燒的不同所造成。在BC與BrC佔比變化方面,非事件日的BC佔比數值變化不規律;相較之下,BC氣膠佔比在事件日存在峰值,BrC在事件當日佔比下降。本研究的成果有助於整體瞭解中南半島生質燃燒月份、氣膠光學特性、氣膠成分及事件日與非事件日的特性差異,並輔助未來觀測實驗規劃、模式模擬驗證、衛星反演驗證及輻射驅動力估算之研究。
摘要(英) Aerosol chemical components (i.e., black carbon (BC), brown carbon (BrC)) regulate the optical properties of aerosol, which are highly sensitive to atmospheric radiative forcing estimation. Previously, through an intensive international field experiment, i.e. The 7 SEAS project, the complex aerosol environment of Indochina was investigated. However, the role of absorbing aerosols during biomass burning season on the environment is still unclear. In this paper, the long-term cimel sunphotometer AERONET (Aerosol Robotic Network) measurements and its inversion products from 6 sites in Indochina have been studied to understand the seasonal and spatial characteristic differences in aerosol optical properties and the mixture of BC with other aerosol components in smoke haze.
The long-term data analysis revealed that the monthly mean aerosol optical depth (AOD) was higher in the months of March and April than the rest of months observed by all AERONET sites in the region, inferring the influence of regional biomass-burning activities. From the aerosol size distribution, the number of small particles was even larger than large particles during dry period. Due to the spatial differences in geographic and land use patterns, the AERONET sites in northern Indochina show a higher AOD compared to that of in southern Indochina. In comparison to the yearly-mean aerosol optical properties, a lower single-scattering albedo (SSA) and higher fine-mode fraction (FMF) values in February and March, suggested the domination of smaller and stronger absorbing particles during this period.
Two methods (i.e., aerosol type cluster and aerosol component retrieval) had been applied to determine the aerosol type and chemical components during the biomass-burning season. The correlation coefficient between component retrieval and chemical sampling was 0.6 at DAK site. For Chiang Mai site (northern Indochina), the cluster method revealed biomass-burning aerosol type in February and March, when a large fraction of absorbing aerosols (BC 5% and BrC 40%) were also observed according to the result from aerosol component retrieval. It is worth to mention that the peak of biomass burning month (i.e. March) in northern Indochina may not necessary with high BC fraction (i.e., lowest SSA) once dust particles are mixed. For southern Indochina (Bac Lieu site), a mixed aerosol type with low absorbance was determined.
Furthermore, we categorized the days into event days and non-event days based on AOD value during biomass-burning months (March in 2014 and 2015). As a result, the tendency of aerosol optical properties between DAK and CM site showed similar pattern, which suggested that aerosol spatial distribution was more homogeneous during non-event days. As contrast, AOD and AE tendency were different at DAK and CM site during event days. We suggested that the peak AOD value of event day at CM site was due to aerosol accumulation from previous day. For DAK site, the peak AOD value of event day happened in the afternoon which may due to nearby source region. The difference of geographic location and altitude between two sites cause the inhomogeneity of aerosol optical properties over the region. For the BC and BrC fractions during even day, BC fraction showed higher value while BrC fraction showed lower for both CM and DAK sites. This results of this study will help us to understand the seasonal variability of aerosol optical properties, the aerosol composition, and the event day and non-event day of biomass-burning month over Indochina peninsula. The results will also be useful in future field experiment planning, model/satellite retrievals evaluations, and aerosol radiative forcing estimation.
關鍵字(中) ★ 生質燃燒
★ 氣膠
★ 黑碳
★ 氣膠種類
★ 氣膠成份
★ 中南半島
關鍵字(英) ★ Biomass burning
★ Aerosol
★ Black carbon
★ Aerosol types
★ Aerosol component
★ Indochina
論文目次 摘要 i
Abstract iii
致謝 vi
目錄 vii
表目錄 ix
圖目錄 x
一、前言 1
1-1研究動機 1
1-2研究目的 2
二、文獻回顧 4
2-1中南半島之生質燃燒活動之背景 4
2-2生質燃燒氣膠物化及光學特性探討 7
2-3 氣膠成分及種類之AERONET相關研究 9
三、研究方法 11
3-1氣膠觀測網(AERONET) 12
3-1-1 太陽光度計 13
3-1-2 太陽光度計測站地點與資料時間 14
3-2 AERONET氣膠光學特性參數 17
3-2-1氣膠光學厚度(Aerosol Optical Depth, AOD) 17
3-2-2光埃指數(Ångström exponent, AE) 18
3-2-3單次散射反照率(Single Scattering Albedo, SSA) 18
3-2-4細顆粒佔比(Fine Mode Fraction, FMF) 19
3-2-5折射指數(Refractive Index, RI) 19
3-3資料選用 20
3-4主要氣膠群落分析 22
3-5氣膠成分反演法 23
3-5-1氣膠成分說明 23
3-5-2氣膠成分反演法運算程序 23
四、結果與討論 26
4-1中南半島氣膠光學特性之長期資料分析 26
4-2氣膠種類群落分析 36
4-3 氣膠成分推估與分析 42
4-3-1反演資料與化學採樣資料之關聯 42
4-3-2中南半島南北地區之探討 44
4-3-3中南半島地區2月及3月SSA低值原因初探 48
4-4 生質燃燒期間氣膠光學特性之探討 52
五、總結與未來展望 65
5-1總結 65
5-2未來展望 67
參考文獻 68
參考文獻 王聖翔,2007:亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用。國立中央大學大氣物理博士班論文。國立中央大學。
李崇德,2013:東亞區域背景及長程傳輸事件氣膠觀測。科技部補助專題研究計畫成果期末報告。科技部。
Andreae, M. O., Gelencs´er, A. (2006), Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmospheric Chemistry and Physics, 6, 3131-3148
Chan, C.Y., Engling, G., Sang, X., Zhang, T., 2011. Biofuel Combustion Emissions -Chemical and Physical Smoke Properties, Environmental Impact of Biofuels, Dr. Marco Aurelio Dos Santos Bernardes (Ed.), ISBN: 978-953-307-479-5, InTech, DOI: 10.5772/23430.
Dey, S., S. N. Tripathi, R. P. Singh, and B. N. Holben (2006), Retrieval of black carbon and specific absorption over Kanpur city, northern India during 2001–2003 using AERONET data, Atmospheric Environment, 40(3), 445-456, doi:10.1016/j.atmosenv.2005.09.053.
Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker (2000), Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, Journal of Geophysical Research: Atmospheres, 105(D8), 9791-9806, doi:10.1029/2000jd900040.
Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, I. Slutsker (2001), Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations, Journal of the Atmospheric Science, 59, 590-608
Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O′Neill, I. Slutsker, and S. Kinne (1999), Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, Journal of Geophysical Research: Atmospheres, 104(D24), 31333-31349, doi:10.1029/1999jd900923.
Giglio, L., I. Csiszar, and C. O. Justice (2006), Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, Journal of Geophysical Research: Biogeosciences, 111(G2), n/a-n/a, doi:10.1029/2005jg000142.
Giles, D. M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions, Journal of Geophysical Research: Atmospheres, 117(D17), n/a-n/a, doi:10.1029/2012jd018127.
Hsiao, T.-C., W.-C. Ye, S.-H. Wang, S.-C. Tsay, W.-N. Chen, N.-H. Lin, C.-T. Lee, H.-M. Hung, M.-T. Chuang, and S. Chantara (2016), Investigation of the CCN Activity, BC and UVBC Mass Concentrations of Biomass Burning Aerosols during the 2013 BASELInE Campaign, Aerosol and Air Quality Research, 16(11), 2742-2756, doi:10.4209/aaqr.2015.07.0447.
Huang, W.-R., S.-H. Wang, M.-C. Yen, N.-H. Lin, and P. Promchote (2016), Interannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts, J Geophys Res Atmos, 121(17), 10016-10028, doi:10.1002/2016JD025286.
Jacobson, M. Z. (2001b), Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695-697.
Jacobson, M. Z. (2004), The short-term cooling but long-term global warming due to biomass burning, J. Clim., 17, 2,909-2,926.
Li, Z., et al. (2013), Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter, Atmospheric Chemistry and Physics, 13(20), 10171-10183, doi:10.5194/acp-13-10171-2013.
Lin, N.-H., et al. (2013), An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmospheric Environment, 78, 1-19, doi:10.1016/j.atmosenv.2013.04.066.
Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier (1996), A global three-dimensional model study of carbonaceous aerosols, Journal of Geophysical Research: Atmospheres, 101(D14), 19411-19432, doi:10.1029/95jd03426.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosefeld (2001b), Aerosol, Climate, and Hydrological Cycle. Since, 294, 2,119-2,124.
Reid, J. S., et al. (2013), Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmospheric Research, 122, 403-468, doi:10.1016/j.atmosres.2012.06.005.
Schmeisser, L., et al. (2017), Classifying aerosol type using in situ surface spectral aerosol optical properties, Atmospheric Chemistry and Physics, 17(19), 12097-12120, doi:10.5194/acp-17-12097-2017.
Tsay, S.-C., et al. (2016), Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS/BASELInE, Aerosol and Air Quality Research, 16(11), 2581-2602, doi:10.4209/aaqr.2016.08.0350.
Wang, S.-H. et al (2015), Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina during 2014 7-SEAS Campaign, Aerosol and Air Quality Research, doi:10.4209/aaqr.2015.05.0310.
Wendisch, M., and W. von Hoyningen-Huene, Possibility of refractive index determination of atmospheric aerosol particles by groundbased solar extinction and scattering measurements, Atmos. Environ., 28, 785-792, 1994.
Xie, Y. S., et al. (2017), Estimation of atmospheric aerosol composition from ground-based remote sensing measurements of Sun-sky radiometer, Journal of Geophysical Research: Atmospheres, 122(1), 498-518, doi:10.1002/2016jd025839.

Yen, M.-C., C.-M. Peng, T.-C. Chen, C.-S. Chen, N.-H. Lin, R.-Y. Tzeng, Y.-A. Lee, and C.-C. Lin (2013), Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment, Atmospheric Environment, 78, 35-50, doi:10.1016/j.atmosenv.2012.11.015.
指導教授 王聖翔(Sheng-Hsiang Wang) 審核日期 2019-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明