博碩士論文 105622017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.226.93.207
姓名 李睿綺(Jui-Chi Lee)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱
(Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去三十年來臺灣中西部因抽水導致地層下陷,且造成了不少民生公共設施危害,使得此議題開始受到關注。為了阻止日益嚴重且持續的地層下陷,政府施行了不少防禦措施並制定法規,然而,地層下陷還是不斷的擴張,尤其在乾季為甚。為了瞭解地層下陷的成因和分佈,我們利用歐洲太空總署Sentinel-1衛星的漸進式掃描地表觀測雷達進行合成孔徑雷達干涉,推估臺灣中西部下陷影響的區域,透過結合臺灣密集的GPS測站網,增加地表變形觀測的空間及時間解析度。首先將衛星所測量到在視衛星(line-of-sight, LOS)方向的地表變形量利用GPS資料校正,能夠將合成孔徑雷達干涉的時間序列資料的誤差從22.14公釐降至8.17公釐。從觀測到的資料顯示,從2015年11月至2017年11月,三個主要地層區的下陷量分別為雲林(125 mm),彰化(50~70 mm)以及嘉義(40~70 mm)。由於Sentinel-1高頻率的拍攝,我們得以從合成孔徑雷達的時間序列中萃取出長期項以及季節項。在雲林縣水林鄉觀測到最大約兩公分的季節性振幅。我們也比較雲林縣的季節性地表變形及地下水變動的相位延遲,發現淺層地下水的回補明顯受到濁水溪和濁水溪沖積扇上游的補注影響。
摘要(英) Land subsidence induced by over-pumping of groundwater has been noticed in west-central Taiwan over the past three decades. The government has promulgated prevention measures and rules to slow down the deterioration in surface deformation. However, ground subsidence continues as a result of periodic demands of water resources, particularly in dry seasons. To understand the cause and distribution of subsiding areas due to environmental parameters, we take advantages of the TOPS mode (Terrain Observation with Progressive Scan) of Sentinel-1 interferometry to map the affected zones in west-central Taiwan. Along with precise surface displacement provided by a dense GPS network, the detailed of spatiotemporal variation of land subsidence can be investigated. We tie the satellite-measured land motion in line-of-sight direction with land-based GPS stations to improve the accuracy of the InSAR measurement. The root-mean-square error between the InSAR and GPS time series improves from 22.14 mm to 8.17 mm. Between November 2015 and November 2017, the main subsidence area is located in Yunlin (125 mm), Changhua (50~70mm) and Chiayi (40~70mm). Thanks to the high temporal revisit frequency of Sentinel-1 satellite, we are capable of extracting both the linear term and seasonal term from InSAR time series. The largest seasonal displacement of ~20 mm has been observed in Shuilin Township in Yunlin County. We also compare the phase delay between seasonal displacement and groundwater fluctuation across the Yunlin County. The recharge of shallow groundwater is significant from both Choushui River and proximal-fan of Choushui River Alluvial Fan.
關鍵字(中) ★ Sentinel-1
★ 地層下陷
★ 濁水溪沖積扇
★ 合成孔徑雷達干涉
關鍵字(英) ★ Sentinel-1
★ Land Subsidence
★ Choushui River Alluvial Fan
★ InSAR
論文目次 摘要 I
Abstract II
誌謝 III
Table of Contents V
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1 Objective and Motivation 1
1.2 Research Contents 4
Chapter 2 Background 5
2.1 Geological Setting 5
2.2 Groundwater 8
2.3 Groundwater Use in Choushui River Alluvial Fan 9
2.4 Land Subsidence Mechanism 11
2.5 Relationship between Surface Displacement and Water 13
2.6 Surface Deformation Studies of Land Subsidence in West-Central Taiwan 14
Chapter 3 Interferometric Synthetic Aperture Radar 15
3.1 Radar 15
3.2 Synthetic Aperture Radar 17
3.3 SAR Image 21
3.4 SAR Interferometry 24
3.5 Differential Interferometric SAR 27
3.6 Limitation of Differential Interferometric SAR 28
Chapter 4 Dataset 29
4.1 SAR Images 29
4.2 Continuous GPS Network 29
4.2.1 GPS Time Series Modeling 30
4.3 CWB Precipitation Data 31
4.4 Groundwater Level Data 31
Chapter 5 Methodology 32
5.1 Interferometric Pairs Selection and Interferogram Generation 34
5.2 Correction of Tropospheric and Ionospheric Phase Delay and Orbital Errors 35
5.2.1 Tropospheric Phase Delay 35
5.2.2 Ionospheric and Orbital Phase Delay 36
5.3 InSAR Time Series Processing 37
5.4 Calibrating InSAR Time Series with Modeled GPS Data 37
5.5 Time Series Analysis 39
Chapter 6 InSAR Time Series of West-Central Taiwan 41
6.1 Calibrated InSAR Time Series 41
6.2 Validation of the Improved InSAR Time Series 47
6.3 Decomposing the Land Subsidence 49
Chapter 7 Discussion 53
7.1 Long-term Surface Deformation 53
7.2 Seasonal Variation: Amplitude 55
7.3 Seasonal Variation: Phase 57
7.4 Limitation and Future Work 62
Chapter 8 Conclusion 63
Reference 64
Appendix A. SAR Images used in this study. 72
參考文獻 [1] Central Geological Survey of Taiwan (1999). Choushui River Alluvial Fan Hydrogeology Survey Report. Central Geological Survey, 130 pages.
[2] Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792
[3] Bettinelli, P., Avouac, J.-P., Flouzat, M., Bollinger, L., Ramillien, G., Rajaure, S., &Sapkota, S. (2008). Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth and Planetary Science Letters, 266(3–4), 332–344. https://doi.org/10.1016/J.EPSL.2007.11.021
[4] Bevis, M., Alsdorf, D., Kendrick, E., Fortes, L. P., Forsberg, B., Smalley, R., &Becker, J. (2005). Seasonal fluctuations in the mass of the Amazon River system and Earth’s elastic response. Geophysical Research Letters, 32(16), L16308. https://doi.org/10.1029/2005GL023491
[5] Borsa, A. A., Agnew, D. C., &Cayan, D. R. (2014). Remote Hydrology. Ongoing drought-induced uplift in the western United States. Science (New York, N.Y.), 345(6204), 1587–1590. https://doi.org/10.1126/science.1260279
[6] Chaussard, E., Milillo, P., Bürgmann, R., Perissin, D., Fielding, E. J., &Baker, B. (2017). Remote Sensing of Ground Deformation for Monitoring Groundwater Management Practices: Application to the Santa Clara Valley During the 2012-2015 California Drought. Journal of Geophysical Research: Solid Earth, 122(10), 8566–8582. https://doi.org/10.1002/2017JB014676
[7] Chen, C.-H., Wang, C.-H., Hsu, Y.-J., Yu, S.-B., & Kuo, L.-C. (2010). Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. Engineering Geology, 115(1–2), 122–131. https://doi.org/10.1016/J.ENGGEO.2010.05.011
[8] Chen, C.-S., Chen, Y.-L., Chen, C.-S., &Chen, Y.-L. (2003). The Rainfall Characteristics of Taiwan. Monthly Weather Review, 131(7), 1323–1341. https://doi.org/10.1175/1520-0493
[9] Chen, C. W., &Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709–1719. https://doi.org/10.1109/TGRS.2002.802453
[10] Cressie, N. (1992). STATISTICS FOR SPATIAL DATA. Terra Nova, 4(5), 613–617. https://doi.org/10.1111/j.1365-3121.1992.tb00605.x
[11] Curlander, J. C., &McDonough, R. N. (1991). Synthetic aperture radar : systems and signal processing. Wiley.
[12] Elósegui, P., Davis, J. L., Mitrovica, J. X., Bennett, R. A., &Wernicke, B. P. (2003). Crustal loading near Great Salt Lake, Utah. Geophysical Research Letters, 30(3), 1111. https://doi.org/10.1029/2002GL016579
[13] Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., …Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2), RG2004. https://doi.org/10.1029/2005RG000183
[14] Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics, 10(3), 761. https://doi.org/10.1029/RG010i003p00761
[15] Fernández, J., Escobar, D., Peter, H., &Féménias, P. (2015). COPERNICUS POD SERVICE OPERATIONS-ORBITAL ACCURACY OF SENTINEL-1A AND SENTINEL-2A. In Proc. Int. Symp. Space Flight Dyn. (pp. 1–14).
[16] Fernandez, J., &Femenias, P. (2014). Sentinels POD Service Operations. In SpaceOps 2014 Conference. Pasadena, CA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2014-1929
[17] Ferretti, A., Prati, C., &Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/36.898661
[18] Galloway, D. L., &Burbey, T. J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486. https://doi.org/10.1007/s10040-011-0775-5
[19] Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States. U.S. Geological Survey.
[20] Geudtner, D., Torres, R., Snoeij, P., Davidson, M., & Rommen, B. (2014). Sentinel-1 System capabilities and applications. In 2014 IEEE Geoscience and Remote Sensing Symposium (pp. 1457–1460). IEEE. https://doi.org/10.1109/IGARSS.2014.6946711
[21] Gomba, G., Rodriguez Gonzalez, F., &DeZan, F. (2017). Ionospheric phase screen compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR modes. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 223–235. https://doi.org/10.1109/TGRS.2016.2604461
[22] Groundwater Engineering Department, Construction Bureau, T. P. G. (1963). Groundwater Source of Whole Choushui River Alluvial Fan.
[23] Hanssen, R. F. (2001). Radar Interferometry. Scientific American (Vol. 276). https://doi.org/10.1038/scientificamerican0297-46
[24] Helmstetter, A., &Shaw, B. E. (2009). Afterslip and aftershocks in the rate-and-state friction law. Journal of Geophysical Research: Solid Earth, 114(B1). https://doi.org/10.1029/2007JB005077
[25] Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16), L16302. https://doi.org/10.1029/2008GL034654
[26] Hooper, A. J. (2006). Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation. ProQuest Dissertations And Theses; Thesis (Ph.D.). Stanford University. Retrieved from http://adsabs.harvard.edu/abs/2006PhDT........66H
[27] Hooper, A., Segall, P., &Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research, 112(B7), B07407. https://doi.org/10.1029/2006JB004763
[28] Hooper, A., Zebker, H., Segall, P., &Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23). https://doi.org/10.1029/2004GL021737
[29] Hsu, S.-K. (1998). Plan for a groundwater monitoring network in Taiwan. Hydrogeology Journal, 6(3), 405–415. https://doi.org/10.1007/s100400050163
[30] Hsu, W. C., Chang, H. C., Chang, K. T., Lin, E. K., Liu, J. K., &Liou, Y. A. (2015). Observing land subsidence and revealing the factors that influence it using a multi-sensor approach in Yunlin County, Taiwan. Remote Sensing, 7(6), 8202–8223. https://doi.org/10.3390/rs70608202
[31] Hsu, Y.-J., Simons, M., Avouac, J.-P., Galetzka, J., Sieh, K., Chlieh, M., …Bock, Y. (2006). Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra. Science (New York, N.Y.), 312(5782), 1921–1926. https://doi.org/10.1126/science.1126960
[32] Huang, M. H., Bürgmann, R., &Hu, J. C. (2016). Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692, 252–264. https://doi.org/10.1016/j.tecto.2016.02.021
[33] Hung, W. C., Hwang, C., Chen, Y. A., Chang, C. P., Yen, J. Y., Hooper, A., &Yang, C. Y. (2011). Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environmentx, 115(4), 957–967. https://doi.org/10.1016/j.rse.2010.11.007
[34] Hwang, C., Yang, Y., Kao, R., Han, J., Shum, C. K., Galloway, D. L., …Li, F. (2016). Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Scientific Reports, 6(1), 28160. https://doi.org/10.1038/srep28160
[35] Jolivet, R., Lasserre, C., Doin, M.-P., Guillaso, S., Peltzer, G., Dailu, R., …Xu, X. (2012). Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. Journal of Geophysical Research: Solid Earth, 117(B6), n/a-n/a. https://doi.org/10.1029/2011JB008732
[36] Lai, T.-H. (1995). Late Quaternary Subsurface Geology of the Southern Choushui Fan-delta. National Taiwan University.
[37] Lai, T.-H., Huang, C.-C., Lu, W.-C., Wang, M.-H., Chen, J.-E., Lin, Y.-T., &Wang, Y.-S. (2017). Delineation of the Groundwater Recharge Geologically Sensitive Areas. Sino-Geotechnics, 154, 33–42.
[38] LH Lin, HR Lin, AHW Ke, T. C. (1992). Petroleum potential of the pre-Miocene formations in the Chianan Plain, Taiwan. Petrol Geol Taiwan.
[39] Lillesand, T. M., Kiefer, R. W., &Chipman, J. W. (2004). Remote sensing and image interpretation. https://doi.org/10.2307/634969
[40] Lin, K.-C., Hu, J.-C., Ching, K.-E., Angelier, J., Rau, R.-J., Yu, S.-B., …Huang, M.-H. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi-Chi earthquake in Taiwan. Journal of Geophysical Research, 115(B7), B07404. https://doi.org/10.1029/2009JB006417
[41] Lin, Y. N., Simons, M., Hetland, E. A., Muse, P., & DiCaprio, C. (2010). A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochemistry Geophysics Geosystems, 11(9), Q09002. https://doi.org/10.1029/2010GC003228
[42] Liu, C.-H., Pan, Y.-W., Liao, J.-J., Huang, C.-T., &Ouyang, S. (2004). Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology, 45(8), 1154–1166. https://doi.org/10.1007/s00254-004-0983-6
[43] Liu, C.-W., Lin, W.-S., Shang, C., &Liu, S.-H. (2001). The effect of clay dehydration on land subsidence in the Yun-Lin coastal area, Taiwan. Environmental Geology, 40(4–5), 518–527. https://doi.org/10.1007/s002540000193
[44] Lu, C.-H., Ni, C.-F., Chang, C.-P., Chen, Y.-A., &Yen, J.-Y. (2016). Geostatistical data fusion of multiple type observations to improve land subsidence monitoring resolution in the choushui river fluvial plain, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(4), 505–520. https://doi.org/10.3319/TAO.2016.01.29.02(ISRS)
[45] Lu, C. H., Ni, C. F., Chang, C. P., Yen, J. Y., & Hung, W. C. (2015). Combination with precise leveling and PSInSAR observations to quantify pumping-induced land subsidence in central Taiwan. Proceedings of the International Association of Hydrological Sciences, 372(2011), 77–82. https://doi.org/10.5194/piahs-372-77-2015
[46] Miller, M. M., &Shirzaei, M. (2015). Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms. Journal of Geophysical Research: Solid Earth, 120(8), 5822–5842. https://doi.org/10.1002/2015JB012017
[47] Mora, O., Lanari, R., Mallorqui, J. J., Berardino, P., &Sansosti, E. (2002). A new algorithm for monitoring localized deformation phenomena based on small baseline differential SAR interferograms. IEEE International Geoscience and Remote Sensing Symposium, 2(11), 1237–1239. https://doi.org/10.1109/IGARSS.2002.1025900
[48] Ojha, C., Shirzaei, M., Werth, S., Argus, D. F., &Farr, T. G. (2018). Sustained Groundwater Loss in California’s Central Valley Exacerbated by Intense Drought Periods. Water Resources Research, 54(7), 4449–4460. https://doi.org/10.1029/2017WR022250
Ouellette, K. J., deLinage, C., &Famiglietti, J. S. (2013). Estimating snow water equivalent from GPS vertical site-position observations in the western United States. Water Resources Research, 49(5), 2508–2518. https://doi.org/10.1002/wrcr.20173
[49] Perfettini, H., &Avouac, J.-P. (2007). Modeling afterslip and aftershocks following the 1992 Landers earthquake. Journal of Geophysical Research, 112(B7), B07409. https://doi.org/10.1029/2006JB004399
[50] Peter, H., Jäggi, A., Fernández, J., Escobar, D., Ayuga, F., Arnold, D., …Féménias, P. (2017). Sentinel-1A – First precise orbit determination results. Advances in Space Research, 60(5), 879–892. https://doi.org/10.1016/j.asr.2017.05.034
[51] Riel, B., Simons, M., Ponti, D., Agram, P., & Jolivet, R. (2018). Quantifying Ground Deformation in the Los Angeles and Santa Ana Coastal Basins Due to Groundwater Withdrawal. Water Resources Research, 54(5), 3557–3582. https://doi.org/10.1029/2017WR021978
[52] Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., &Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382. https://doi.org/10.1109/5.838084
[53] Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011a). GMTSAR: An InSAR Processing System Based on Generic Mapping Tools. Retrieved from https://escholarship.org/uc/item/8zq2c02m
[54] Sandwell, D., Mellors, R., Tong, X., Wei, M., &Wessel, P. (2011b). Open radar interferometry software for mapping surface Deformation. Eos, Transactions American Geophysical Union, 92(28), 234. https://doi.org/10.1029/2011EO280002
[55] Schmidt, D. A., &Bürgmann, R. (2003). Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth, 108(B9), 1–13. https://doi.org/10.1029/2002JB002267
[56] Schwartz, F. W., &Zhang, H. (2003). Fundamentals of Ground Water. Wiley.
[57] Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir. Geol. Soc. China, 6, 21–33.
[58] Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1–4), 57–76. https://doi.org/10.1016/0040-1951(90)90188-E
[59] Terzaghi, K. (1925). Principles of Soil Mechanics, IV—Settlement and Consolidation of Clay. Engineering News-Record.
[60] Todd, D. K., &Mays, L. W. (1959). Groundwater hydrology. Wiley. Retrieved from https://www.wiley.com/en-us/Groundwater+Hydrology%2C+3rd+Edition-p-9780471059370
[61] Tolman, C. F., &Poland, J. F. (1940). Ground-water, salt-water infiltration, and ground-surface recession in Santa Clara Valley, Santa Clara County, California. Transactions, American Geophysical Union, 21(1), 23. https://doi.org/10.1029/TR021i001p00023
[62] Tregoning, P., Watson, C., Ramillien, G., McQueen, H., &Zhang, J. (2009). Detecting hydrologic deformation using GRACE and GPS. Geophysical Research Letters, 36(15), n/a-n/a. https://doi.org/10.1029/2009GL038718
[63] Tu, J.-Y., &Chou, C. (2013). Changes in precipitation frequency and intensity in the vicinity of Taiwan: typhoon versus non-typhoon events. Environmental Research Letters, 8(1), 014023. https://doi.org/10.1088/1748-9326/8/1/014023
[64] Tung, H., &Hu, J. C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126–135. https://doi.org/10.1016/j.tecto.2012.08.009
[65] Wahr, J., Khan, S. A., vanDam, T., Liu, L., vanAngelen, J. H., van denBroeke, M. R., &Meertens, C. M. (2013). The use of GPS horizontals for loading studies, with applications to northern California and southeast Greenland. Journal of Geophysical Research: Solid Earth, 118(4), 1795–1806. https://doi.org/10.1002/jgrb.50104
Water Resource Agency. (2017). The Project for Annual Work Plan of Land Subsidence Prevention and Reclamation in 2017.
[66] Young, T. (1802). The Bakerian Lecture: On the Theory of Light and Colours. Philosophical Transactions of the Royal Society of London, 92(0), 12–48. https://doi.org/10.1098/rstl.1802.0004
[67] Yu, C., Li, Z., &Penna, N. T. (2018). Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sensing of Environment, 204, 109–121. https://doi.org/10.1016/J.RSE.2017.10.038
[68] Yu, C., Penna, N. T., &Li, Z. (2017). Generation of real-time mode high-resolution water vapor fields from GPS observations. Journal of Geophysical Research: Atmospheres, 122(3), 2008–2025. https://doi.org/10.1002/2016JD025753
[69] Yu, H.-L., &Chu, H.-J. (2010). Understanding space–time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan. Journal of Hydrology, 381(3–4), 239–247. https://doi.org/10.1016/J.JHYDROL.2009.11.046
[70] Yu, S.-B., Chen, H.-Y., &Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1–3), 41–59. https://doi.org/10.1016/S0040-1951(96)00297-1
指導教授 曾國欣 林玉儂 張中白 郭陳澔(Kuo-Hsin Tseng Yu-Nung Lin Chung-Pai Chang Hao Kuo-Chen) 審核日期 2019-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明