博碩士論文 105622602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.129.211.165
姓名 Wulan Okta Karunia(Wulan Okta Karunia)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱
(Particle Size Distribution of the Active Fault Zone of Chelungpu Fault and Its Implication for Slipping and Energetics of Large Earthquakes)
相關論文
★ 井測資料於臺灣中央山脈北部地熱區之解釋及應用★ 台灣淺灘沉積物組成與物源分析
★ 臺灣花蓮和平花崗片麻岩之摩擦特性及其隱示★ Internal Structure and Permeability of the Creeping Chihshang Fault, Taiwan
★ 因應高速飽和水斷層泥變形之壓力閥研製★ 臺灣金門太武山近期閃電熔岩之礦物、微觀構造及化學特徵
★ 南中國海東北部過去三萬八千年以來的古海洋變化★ 以摩擦試驗探討斷層滑移對於微生物生存的影響
★ 臺灣西南部車瓜林斷層之斷層岩石及變形機制★ The Effect of Fluid Drainage on The Frictional Strength of Water-Saturated Kaolinite During Seismic Slip
★ 以熱水力化耦合數值模擬探討快速剪切的斷層泥孔隙水壓與變形機制★ 蛇紋岩斷層帶內的橄欖石與頑火輝石可為地震破裂指標
★ 俄國西伯利亞古陸奧隆多(Olondo)綠岩帶起源及其地球動力學意義
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 1999 年,Mw7.6 的集集地震在臺灣的車籠埔斷層北部產生了約10 米的滑動。本研究分析來自臺灣車龍埔斷層深鑽計畫(Taiwan Chelungpu fault Drilling Project;TCDP)中可能記錄同震事件的黑色斷層泥中的主要滑動帶(Principal Slip Zone;PSZ)來估計
破裂能量及推斷該區域可能的斷層機制。透過場發射掃描式電子顯微鏡,穿透式電子顯微鏡和軟體ImageJ 的分析,我們根據顯著的裂隙和顆粒粒徑的差異將黑色斷層泥分為六層。由於微構造的分析顯示第一層中沒有明顯的破裂及剪切特徵,與目前鑑定之主要滑動帶特徵相似,因此我們將其認定為集集地震的主要滑動帶,並與其他層進行比較。有趣的是,第三層和第五層在微構造的特徵上與第一層相似。由於有奈米顆粒的富集,第一層、第三層和第五層具有相似的碎形維數和模式。此外,第五層具有尚未變形的紋理,暗示該層的產生是經由最近的同震事件,類似於第一層。由於斷層滑動形成的Clay Clast Aggregates (CCAs)在第五層中不能被觀察到,而卻產生在第一層中,表明第五層的物質可能由第一層注入。我們認為第三層可能是舊的同震事件的主要滑
移帶。由於其本身變形裂縫的特徵,這可能是由於其厚度大於Chi-Chi 的事件。此外,車籠埔斷層的地震破裂似乎不會產生巨大的破裂能,而是轉由釋放摩擦熱。
摘要(英) The 1999 Mw7.6 Chi-Chi Earthquake produced ~10m slip along the northern Chelungpu fault in Taiwan. This study aims to recognize the Primary Slip Zone (PSZ) in the black gouge from Taiwan Chelungpu-fault Drilling Project (TCDP) sample material which might experience past coseismic events, estimate the fracture energy and infer plausible faulting mechanism in this region. By means of Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and ImageJ analysis, we divide the black gouge into six layers according to the distinguished fracture and grain size. Layer-1 recognized as the Chi-Chi PSZ showing a massive structure, was utilized to compare with all layers. Interestingly, Layer-3 and Layer-5 are microstructurally similar to Layer-1. Because of the abundance of nanoparticles, Layer-1, Layer-3, and Layer-5 have similar fractal dimensions and patterns. Layer-5 has a not-yet-deformed texture implying this layer produced by the recent event, similar to Layer-1. CCAs, as formed from fault sliding, cannot be observed in layer-5 while it occurs in layer-1, suggesting that this layer-5 may have injected by the layer-1. Layer-3 is suggested as the PSZ of the ancient coseismic event from its deformation fissure which may have resulted from a larger event than Chi-Chi from its large thickness. Chelungpu fault seems to have a small fracture energy value that the huge remaining part of breakdown work released as the frictional heat.
關鍵字(中) ★ Taiwan Chelungpu fault Drilling Project (TCDP)
★ Scanning Electron Microscope
★ Fracture Energy
★ Particle Size Distribution
關鍵字(英) ★ Taiwan Chelungpu fault Drilling Project (TCDP)
★ Scanning Electron Microscope
★ Fracture Energy
★ Particle Size Distribution
論文目次 摘要 ................................................................................................................................. ii
ABSTRACT ......................................................................................................................... iii
ACKNOWLEDGEMENTS .................................................................................................... iv
TABLE OF CONTENTS ........................................................................................................ v
LIST OF FIGURES ............................................................................................................... vii
LIST OF TABLES ................................................................................................................. x
CHAPTER 1
INTRODUCTION ....................................................................................................... 1
1.1 Geological Setting ................................................................................................ 1
1.2 Scientific Drilling Project ...................................................................................... 1
1.3 Taiwan Chelungpu-fault Drilling Project (TCDP) .................................................. 3
CHAPTER 2
METHODS AND ANALYSIS ........................................................................................ 10
2.1 TCDP Core Material .............................................................................................. 10
2.2 Scanning Electron Microscope (SEM) .................................................................. 10
2.3 Transmission Electron Microscope (TEM) ........................................................... 11
2.4 Particle Size Analysis ............................................................................................ 12
2.5 Particle Surface Area ............................................................................................ 13
2.6 Calculation of Fracture Energy ............................................................................. 14
CHAPTER 3
RESULTS .................................................................................................................. 20
3.1 Layering of the Gouge .......................................................................................... 20
vi
3.2 Particle Size and Cumulative Distribution ............................................................ 22
CHAPTER 4
DISCUSSION ............................................................................................................. 42
4.1 Two More Primary Slip Zone (PSZ) ....................................................................... 42
4.2 Layer-5 as the Primary Slip Zone and Its Implication ........................................... 44
4.3 Layer-3 as the Primary Slip zone and Its Implication ........................................... 45
4.4 The estimated Fracture Energies for Two Potential PSZ ..................................... 45
CHAPTER 5
CONCLUSIONS ......................................................................................................... 49
REFERENCES ..................................................................................................................... 50
APPENDIX ......................................................................................................................... 55
參考文獻 Anderson. L. J., Osborne, R. H., and Palmer. D. F., 1983. Cataclastic rocks of the San Gabriel
fault – An expression of deformation at deeper crustal levels in the San Andreas fault
zones: Tectonophysics, v. 98, p. 209-251.
Ando, M. 2001. Geological and geophysical drilling at the Nojima fault: fault trace of the 1995
Hyogoken Nanbu earthquake, Ms 7.2. The Island Arc 10: 206–214.
Boullier, A.-M., Ohtani, T., Fujimoto, K., Ito, H., Dubois, M., 2001. Fluid inclusions in
pseudotachylytes from the Nojima Fault, Japan. Journal of Geophysical Research 106
(B10), p. 21965-21977.
Boullier, A.-M., Yeh, E. C., Boutareaud, S., Song, S. R., Tsai, C. H., 2009. Microscale anatomy of
the 1999 Chi-Chi earthquake fault zone. Geochemistry Geophysics Geosystems 10 (3),
Q03016.
Boullier, A.-M., 2011. Fault-zone geology: lessons from drilling through the Nojima and
Chelungpu fault. Geological Society, London, Special Publications 359, p. 17-37.
Boutareaud, S., Calugaru, D.- G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., Shimamoto,
T., 2008. Clay-clast aggregates: a new textural evidence for seismic fault sliding?
Geophysical Research Letters 35 (5), L05302.
Brodsky, E. E., Kanamori, H., 2001. Elastohydrodynamic lubrication of faults. Journal of
Geophysical Research 106, p. 16357-16374.
Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault zone architecture and permeability
structure. Geology 24, p. 1025-1028.
51
Chang C.P., Angelier, J., Huang C.-Y., Liu, C.-S. 2001. Structural evolution and significance of
melange in a collision belt: the Lichi Melange and the Taiwan arccontinent collision.
Geological Magazine. doi:10.1017/S0016756801005970.
Chen C.C., Telesca L., Lee C.T., and Sun Y.S., 2011. Statistical Physics of Landslides: New
Paradigm, EPL Journal.
Chen, Y. G., Chen, W. S., Lee, J. C., Lee, Y. H., Lee, C. T., Chang, H. C., Lo, H. C., 2001. Surface
rupture of 1999 Chi-Chi earthquake yields insights on active tectonics of central
Taiwan. Bulletin of the Seismological Society of America 91, p. 977-985.
Chester, F. M., and Logan, J. M., 1986. Composite planar fabric of gouge from the Punchbowl
fault, California: Journal of Structural Geology, v. 9, p. 621-634.
Chester, J. S., F. M. Chester and A. K. Kronenberg, 2005. Fracture surface energy of the
Punchbowl fault, San Andreas system, Nature, vol. 437, 133-136.
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni G., Shimamoto T., 2006. Natural and
experimental evidence of melt lubrication of faults during earthquakes. Science 311,
p. 647-649.
Han, R., Hirose, T., 2012. Clay-clast aggregates in fault gouge: An unequivocal indicator of
seismic faulting at shallow depths? Journal of Structural Geology 43, p. 92-99.
Hirono, T., Sakaguchi, M., Otsuki, K., Sone, H., Fujimoto, K., Mishima, T., Lin, W., Tanikawa,
W., Tanimizu, M., Soh, W., Yeh, E. C., Song, S. R., 2008. Characterization of slip zone
associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and
microstructural observations of the Taiwan Chelungpu fault. Tectonophysics 449, p.
63-84.
Hung, J. H., Wu, Y. H., Yeh, E. C., Wu, J. C., TCDP Scientific Party, 2007. Subsurface structure,
physical properties, and fault zone characteristics in the scientific drill holes of Taiwan
52
Chelungpu-fault Drilling Project. Terrestrial, Atmospheric and Oceanic Sciences 18, p.
271-293, doi: 10.3319/TAO.2007.18.2.271(TCDP).
Ho, C. S., 1988: An Introduction to the Geology of Taiwan-Explanatory Text of the Geologic
Map of Taiwan, 2nd Ed., Central Geological Survey, MOEA, Taipei, Taiwan, ROC, 163
pp.
Ho, H. C., and M. M. Chen, 2000. Taichung—Explanation Text of the Geological Map of Taiwan
24, 65 pp.
Imanishi, K., and Ellsworth, W.L., 2006. Source scaling relationships of microearthquakes at
Parkfield, CA, determined using the SAFOD pilot hole array. American Geophysical
Union, 81–80.
Kanamori, H., Heaton, T. H., 2000. In Geocomplexity and the physics of earthquakes (eds
Rundle, J. B., Turcotte, D. L. & Klein, W.) (American Geophysical Union, Washington
DC).
Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., Ma, K. F., 2006. Heat signature on
the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake.
Geophysical Research Letters 33, L14306. doi:10.1029/ 2006GL026733.
Kuo, L.W., Song, S. R., Yeh, E. C., Chen, H. F., 2009. Clay mineral anomalies in the fault zone of
Chelungpu Fault, Taiwan, and its Implication, Geophysical Research Letters 36,
doi:10.1029/2009GL039269.
Kuo, L.W., Song, S. R., Yeh, E. C., Chen, H. F., Si, J., 2012. Clay mineralogy and geochemistry
investigations in the host rock of the Chelungpu fault, Taiwan: Implication for faulting
mechanism. Journal of Asian Earth Sciences 59, p. 208-218
53
Kuo, L. W., H. C. Hsiao, S. R. Song, H. S. Sheu and J. Suppe, 2014. Coseismic thickness of
principal slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and
correlated fracture energy. Tectonophysics 619-620, p. 29-35.
Lee, J. C., Chen, Y. G., Sieh, K., Mueller, K., Chen, W. S., Chu, H. T., Chan, Y. C., Rubin, C., Yates,
R., 2001. A vertical exposure of the 1999 surface rupture of the Chelungpu fault at
Wufeng, western Taiwan: structural and paleoseismic implications for an active thrust
fault. Bulletin of the Seismological Society of America 91, p. 914-929.
Li, H., Xu, Z., Si, J., Song, S., Sun, Z., Chevalier, M., 2012. Characteristics of the fault-related
rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault
Scientific Drilling Project Borehole-1 (WFSD-1). Tectonophysics, 584:23-42
Ma, K. F., Song, T. R. A., Lee, S. J., Wu, H. I., 2000. Spatial slip distribution of the Septmber 20,
1999, Chi-Chi, Taiwan, earthquake, Mw 7.6 - Inverted from teleseismic data.
Geophysical Research Letters 27, p. 3417-3420.
Ma, K.-F., H. Tanaka, S.-R. Song, C.-Y. Wang, J.-H. Hung, Y.-B. Tsai, J. Mori, Y.-F. Song, E.-C. Yeh,
W. Soh, H. Sone, L.-W. Kuo and H.-Y. Wu, 2006. Slip zone and energetics of a large
earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444, 473-
476.Sammis, C. G. and Y. Ben-Zion, Mechanics of grain-size reduction in fault zones, J.
Geophys. Res., vol. 113, 2008.
Sibson, R. H., 1977. Fault rocks and fault mechanisms: Geological Society of London Journal,
v. 133, p. 191-231.
Song, S. R., Kuo, L. W., Yeh, E. C., Wang, C. Y., Hung, J. H., Ma, K. F., 2007. Characteristics of
the Lithology, Fault-related Rocks and Fault Zone Structures in the TCDP Hole-A.
Terrestrial, Atmospheric and Oceanic Science 18, p. 243-269.
54
Wang, C. Y., Li, C. L., Su, F. C., Leu, M. T., Wu, M. S., Lai, S. H., Chern, C. C., 2002. Structural
mapping of the 1999 Chi-Chi earthquake fault, Taiwan by seismic reflection methods.
Terrestrial, Atmospheric and Oceanic Sciences 13, p.211-226.
Wilson, B.,Dewers, T., Reches, Z. & Brune, J. 2005. Particle size and energetics of gouge from
earthquake rupture zones. Nature 434, 749–752.
Yeh, E. C., Sone, H., Nakaya, T., Ian, K. H., Song, S. R., Hung, J. H., Lin, W., Hirono, T., Wang, C.
Y., Ma, K. F., Soh, W., Kinoshita, M., 2007. Core Description and Characteristics of Fault
Zones from the Hole-A of the Taiwan Chelungpu-Fault Drilling Project. Terrestrial,
Atmospheric and Oceanic Science 18, p. 327-357.
Yu, S. B., Chen, H. Y., Kuo, L. C., 1997. Velocity field of GPS stations in the Taiwan area.
Tectonophysics 274, p. 41-59.
Zoback, M.D., and Hickman, S.H., 2007. Preliminary results from SAFOD Phase 3: implications
for the state of stress and shear localization in and near the San Andreas Fault at depth
in central California. Eos, Trans. AGU, 88(52), Fall Meeting Suppl., Abstract T13G-03
Zoback, M., Hickman, S., Ellsworth, W., 2010. Scientific drilling into the San Andreas fault
zone: Eos (Transactions, American Geophysical Union) 91, p. 197-199,
doi:10.1029/2010EO220001.
指導教授 郭力維(Li-Wei Kuo) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明