博碩士論文 105622603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.221.13.173
姓名 斯亞德(Barqi Muhammad Irsyad)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析
(Quantitative AVO and Structure Analysis of Gas Hydrate and Sedimentation Features Across China Continental Slope, SW Taiwan.)
相關論文
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用三維有限差分法模擬與分析台北盆地的場址放大效應★ 台北盆地的場址效應放大效應-譜比法應用於強震資料與理論分析的探討
★ 震波走時於台灣三維參考速度模型評估、地震定位及地利地區深部速度構造的研究★ 台灣地區參考莫荷面傾角變化的探討
★ 台灣西南部地殼變形與地震活動相關性研究★ 台灣西南外海多頻道震測之甲烷水合物與海洋精細構造成像研究
★ 透地雷達特性分析應用於油品污染物探測★ 測井資料的分析於兩處海底甲烷冰蘊藏區: 北阿拉斯加埃爾伯特山和墨西哥灣綠色峽谷的實際應用
★ 台灣西南海域下枋寮盆地甲烷水合物之AVO分析★ 台灣西南下枋寮盆地天然氣水合物調查同中點集的AVA/AVO模擬、分析和逆推
★ 台灣南部的體波與表面波波場逆推:應用於TAIGER T4b寬角度折射/反射資料★ Pre-Stack Diffraction Stack Depth Migration of Active Source Short-offset Marine and Long-offset Seismic Data
★ 以部分波場逆推及模擬對沿TAIGER T6測線的台灣北部地區進行深部構造成像★ 台灣西南近海Formosa Ridge天然氣水合物和游離氣岩石物理參數估算
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析
摘要
震測勘探測線MGL0905-8RR1的科研議題是TAIGER計畫項目的一部分。該項目透過與Lamont-Doherty地球觀測站(美國)和MOST(台灣)進行海、陸聯合炸測資料的收集與分析工作,在NEP-MOST基金支持下進行天然氣水合物(GH)的勘探相關項目研究。該震測探勘測線收集了從Formosa 海脊到Yuan-An 海脊,並到達台灣西南外海岸的Good Weather海脊幾個目標區的震測數據。本研究透過垂直入射波線追跡(NIRT)、地震屬性、AVO / AVA分析、時深轉換和成像界面構造特徵的界定進行了天然氣水合物的勘探科學研究。 BSR(海底仿擬反射)是指示GH存在的震測反應。沿著該震測探勘測線本研究提出了十個潛在的天然氣水合物位置。地震屬性和AVO分析是進一步分析與確定主要GH目標很重要的科研步驟。首先透過研究地震屬性,然後進行AVO分析,以識別沿著該震測勘探測線的BSR分布。這些屬性包括截距(A),梯度(B),乘積(A * B),泊松比,流體因子,曲率,(A + B)/ 2和S波反射率。截距和梯度屬性是確認GH存在的主要依據。根據AVO / AVA屬性研究,所有目標區域都具有IV級的AVO分類。十分之七的地點可確定為天然氣水合物存在的高潛力位置。跟據交叉圖(cross plot),針對Formosa 海脊、Yuan-An 海脊到Good Weather海脊等地區探討AVO效應和進行岩石物理特性的詳細研究。雖然在台灣西南部可能可發現具有AVO III級的潛在天然氣水合物(GH)礦區,但結果表明該測線的所有GH目標都與AVO IV級別類可相對應。AVO IV級別類通常具有負截距和正梯度的特性。這種AVO特徵可能是目標區域的沉積過程和環境變化引起的,這些在主動和被動邊緣區域產生沉積物的岩性變化,可在交叉圖中造成不同的AVO與AVA效應行為表現。沉積物含量的改變和沉積環境變化會影響截距和梯度的響應。
NIRT方法用於針對主要沉積界面進行成像並定義每個界面的平均速度,執行時間到深度的轉換。具有相同或相似平均速度的地層可以被解釋和假設為主要沉積過程發生在相同的地質時間間隔。沿著該震測勘探測線主要可分為兩個區域。基於所定義的模型界面和合成的地震記錄與震測剖面相比對,可以通過定量分析進行解釋。進行反覆的疊代從事時間 - 深度轉換,透過調整速度及對應的到時和伴隨深度的改進,從時間和深度殘差值來評估收斂。經四次疊代之後,RMS行程時間殘差和STD值都減小到定值。 NIRT技術提供了能夠量化結構界面並確定地層速度的結果。在福爾摩沙海脊的西北部,本研究定量地定義了三個主要界面,相應的速度值分別為1484米/秒,1528米/秒和1644米/秒。包括永安海脊在內的福爾摩沙海脊地區東南部有五個界面,相應的速度值分別為1484 m / s,1528 m / s,1614 m / s,1644 m / s和1684 m / s。確定的主界面在時間偏移剖面中清楚地顯示出高聲抗對比度和強反射振幅。連續沉積界面分層的分佈特徵表明本區具穩定的沉積過程並均一的覆蓋於深海和淺海沉積環境。同時水下的風化,海底坍塌產生的濁流和研究區域下可能的泥貫入體也對沉積特徵的橫向變化起著重要作用。在這項研究中,沿MGL0905-8RR1震測剖面觀測到的地質特徵包括大量沉積物質傳輸(MTD),BSR,斷層,流體傳輸管道,河道填充或地槽填充沉積特徵。
關鍵詞:天然氣水合物,AVO分析,AVO屬性,垂直入射波線追跡,地質特徵。
摘要(英) Quantitative AVO and Structure Analysis of Gas Hydrate and Sedimentation Features Cross China Continental Slope, SW Taiwan
Abstract
A seismic survey line, MGL0905-8RR1, which is part of TAIGER project that joint with Lamont-Doherty Earth Observatory (USA) and MOST (Taiwan) for seismic surveys associate with gas hydrate (GH) exploration project supported under NEP-MOST fund. The seismic survey line which collected the data across several targets from Formosa Ridge to Yuan-An Ridge and reach Good Weather Ridges in offshore southwest of Taiwan. Seismic attributes, AVO/AVA analysis, time-to-depth conversion and imaging interface structure features through Normal Incidence Ray Tracing (NIRT) were performed for gas hydrate expeditions. BSR (Bottom Simulating Reflector) is a seismic response to indicate the GH presence. Ten potential gas hydrates locations were proposed along the studied seismic line. Seismic attribute and AVO analysis serve as the step to identify the major GH targets that could be important for further analysis. Seismic attributes were studied first followed by AVO analysis to identify BSRs along the seismic line. These attributes include Intercept (A), Gradient (B), Product (A*B), Poisson’s ratio, Fluid Factor, Curvature, (A+B)/2 and S-wave reflectivity. Intercept and Gradient are the main attributes to confirm the GH existence. From AVO/AVA attributes studies, all the target zones have AVO classification of class IV. Seven out of ten locations are identifying as high potential locations for gas hydrates existence. Detailed studies on both Formosa Ridge and Yuan-An ridge areas are discussed on AVO effects and rock physics properties based on cross plots. Although AVO class III could be potentially and commonly found in southwest Taiwan, however, the results show that all the GH targets along the seismic line correspond to the AVO class IV. Class IV usually has properties of negative intercept and positive gradient. Such AVO feature could be caused by depositional processes and environment changes between identified target regions that produce lithology changes across active and passive margins. The sediments properties changes may produce different AVO behavior in the cross plot. The sediments contents and environment changes can affect the response of intercept and gradient.
NIRT approach serves the purpose for imaging the main interfaces and to define average velocity for each interface in order to perform time-to-depth conversion. The layer with same or similar average velocity can be interpreted and assumed as the major sedimentation process occurred at the same geologic time interval. Seismic line is mainly divided into two areas. Based on the defined model interfaces and synthetic seismograms compared with stacked section, interpretation can be performed through quantitative analysis. Through iterative time-to-depth conversion by adjusting velocity and therefore travel-time and follow-up with depth improvement, the convergence is evaluated from time and depth residuals. Both RMS travel-time residual and STD values decreases to a constant value after four iterations. NIRT technique provides the results which able to digitize structure interfaces and determine formation velocity. At northwest of Formosa Ridge, three main interfaces with the corresponding velocities values of 1484 m/s, 1528 m/s and 1644 m/s respectively were quantitatively defined. At southeast of Formosa Ridge area including Yuan-An Ridge has five interfaces with the corresponding velocities values of 1484 m/s, 1528 m/s, 1614 m/s, 1644 m/s and 1684 m/s respectively. The determined main interfaces clearly show high contrast with strong reflection amplitude in the time migration section. The distribution of continuous layering feature indicates stable sedimentation process cover both deep and shallow marine depositional environment. Meanwhile weathering, submarine slump creating turbidity current and mud diapirism (?) beneath the study area also play important roles for lateral variation of sedimentary features. In this study, the proposed geological features observed in the seismic section along MGL0905-8RR1 include Mass Transport Deposit (MTD), BSRs, faults, fluid conduct, channel fill or trough fill sedimentation features.
Keywords: gas hydrates, AVO analysis, AVO attributes, Normal Incidence Ray Tracing, geological features.  
關鍵字(中) ★ 天然氣水合物
★ AVO分析
★ 垂直入射波線追跡
★ 地質特徵
關鍵字(英) ★ gas hydrates
★ AVO analysis
★ AVO attributes
★ Normal Incidence Ray Tracing
★ geological features.
論文目次 Table of Contents
Abstract v
Acknowledgement vi
List of Figure ix
List of Tables xxx
Chapter One - Introduction 1
1.1 Geology Background in Taiwan and Thesis Study Area 1
1.2 Gas Hydrates 3
1.3 Aim and Scope of My Thesis and Arrangement 7
Chapter Two - Seismic Data Processing and Seismic Attributes (Theory and Interpretation) 23
2.1 Seismic Data Processing Methods 23
2.1.1 Data Processing Work Flow and Principle 23
2.1.2 Reformatting 24
2.1.3 Trace Editing 24
2.1.4 Deconvolution 25
2.1.5 Filtering 31
2.1.6 Sorting 32
2.1.7 Velocity Analysis and Normal Move-out (NMO) Correction 33
2.1.8 Dip Move-out (DMO) 35
2.1.9 Stacking 37
2.1.10 Time Migration 37
2.2 Seismic Attributes 38
2.2.1 Instantaneous Amplitude (IA) 39
2.2.2 Instantaneous Phase (IP) 40
2.2.3 Instantaneous Frequency (IF) 41
2.3 Seismic Response of the Bottom Simulating Reflector (BSR) 42
Chapter Three - Amplitude Variation with Offset or Angle Theory and Its Applicatio 81
3.1. AVO/AVA Theory 81
3.2 AVO/AVA Analysis 96
3.2.1 Super Gather 97
3.2.2 Angle Gather 98
3.3. Amplitude versus Offset (AVO) Attributes. 100
3.3.1. Intercept (A) and Gradient (B) 100
3.3.2. Product (A*B) 102
3.3.3. Curvature (C) 103
3.3.4. Zero-offset S-Wave Reflectivity (A-B)/(P-G) 104
3.3.5. Fluid Factor 106
3.3.6. Pseudo Poisson’s Ratio Reflectivity 107
3.3.7. Scaled Poisson’s Ratio Change Attribute (A+B)/2 or (P + G)/2 108
3.4. AVO Classification 109
3.5. AVO Cross-plot 110
3.6. Application of AVO Attributes and Analysis 112
Chapter Four - Velocity and Structure Determination by Normal Incidence Ray-Tracing 167
4.1 Normal Incidence Ray-Tracing Theory 167
4.1.1 Snell’s Law Principle 170
4.1.2 Fermat’s Principle 171
4.1.3 Huygens’s Principle 172
4.2 Time to Depth Conversions 172
4.3 Normal Incidence Ray Tracing Processing and Discussions 175
4.3.1 Inverse Modeling by NIRT in the First Section 178
4.3.2 Inverse Modeling by NIRT in the First Section Second Section 181
Chapter Five - Seismic Stratigraphy Features and Geological Interpretation 280
5.1 Geology Background of Southwest Taiwan 280
5.2 Seismic Stratigraphy Study and Its Interpretations 283
Chapter Six 304
Conclusions, Future Works and Suggestions. 304
參考文獻 Angelier, J., Lee, J.C., Hu, J.C. and Chu, H.T. 2003. Three-dimensional deformation along the rupture trace of the September 21st, 1999, Taiwan earthquake: a case study in the Kuangfu school. J. Struct. Geol.
Baba, K., and Yamada., Y. 2004. BSRs and associated reflections as an indicator of gas hydrate and free gas accumulation: an example of accretionary prism and fore-arc basin system along the Nankai Trough, off central Japan. Resour. Geol Vol. 54, pp 11–24.
Chen, S.C., Hsu, S.K., Tsai, C.H., Wang, Y., Chung, S.H., Chen, P.C., Liu, C.S., and Yang, T. F. 2012. Active mud volcanoes and gas seeps in the near shore of SW Taiwan. In: 11th International conference on gas in marine sediments. France. Program and abstracts, pp 99.
Chiu J.K., Tseng W.H., and Liu, C.S. 2006. Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. Terr. Atmos. Ocean Sci. Vol. 17, pp 703–722.
Claypool, G.E., and Kaplan, I.R. 1974. The origin and distribution of methane in marine sediments. Natural Gases in Marine Sediments. Kaplan, ed. Plenum Publishing Corp. New York. pp 99–139.
Clennell, M.B., M. Hovland, J.S., Booth, P. Henry., and W.J. Winters. 1999. Formation of natural gas hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. Journal of Geophysical Research 104:22,985–23,003.
Doyle, E.H., Dallimore, R.A., Fine, A.M., Nur, M.E.Q., Pilson, W.S., Reeburgh, E.D., Sloan, Jr., Tréhu, A.M., Bintz, J., Merrill, J., and Caputo, N. 2004. Charting the Future of Methane Hydrate Research in the United States. National Academies Press. Washington D.C. pp 192.
Ginsberg, G., Soloviev, T.S., Matveeva, and Andreeva, I. 2000. Sediment grain size control on gas hydrate presence. Proceedings of the Ocean Drilling Program Scientific Results Vol. 164, pp 237–245.
Hsu, H.H., Liu, C.S., Yu, H.S., Chang, J.H., and Chen, S.C. 2013. Sediment dispersal and accumulation in tectonic accommodation across the Gaoping Slope, offshore Southwestern Taiwan. Journal of Asian Earth Sciences Vol.69, pp 26–38.
Hsu, S.K., Wang, S.Y., Liao, Y.C., Yang, T.F., Jan, S., Lin, J.Y., and Chen, S.C. 2013. Tide modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters, pp 369–370, 98–107.
Huang, W. L. 1995. Distribution of mud diapirs offshore of southwestern Taiwan and their relationships with the onshore structures and deposition environment. Master Thesis. National Taiwan University. Taiwan.
Kennett, J.P., Cannariato, I.L., Hendy., and R.J. Behl. 2003. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. American Geophysical Union. Washington, D.C. pp 216.
Lin, A.T., Liu, C.S., Lin, C.C., Schnurle, P., Chen, G.Y., Liao, W.Z., Teng, L.S., Chuang, H.J., Wu, M.S. 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan. Geology 255, pp 186–203.
Liu, C. S., Chen, K.C., and Schnürle, P. 2003. Distribution and seismic characteristics of gas hydrate offshore southwestern Taiwan. EOS Trans. AGU, Fall Meet. Suppl., Abstract OS51C-0880.
Liu, X., and Flemings, P. 2006. Passing gas through the gas hydrate stability zone at southern Hydrate Ridge, offshore Oregon. Earth and Planetary Science Letters. 241, pp 211–226.
Liu, C. S., Huang, I.L., and Teng, L. S. 1997. Structural features off southwestern Taiwan. Mar. Geol 137, pp 305–319.
Liu, C. S., Liu, S.Y., Lallemand, S.E., Lundberg, N., and Reed, D. 1998. Digital elevation model offshore Taiwan and its Tectonic implications. Terr. Atmos. Ocean. Sci., Vol. 9, pp 705–738.
Lundberg, N., Reed, D., Liu, C.S., and Lieske, Jr. 1992. Structural controls on orogenic sedimentation, submarine Taiwan collision. Acta Geol. Taiwan Vol. 30, pp 131–140.
Lundberg, N., Reed, D.L., Liu, C.S., and Lieske, Jr. 1997. Forearc basin closure and arc accretion in the submarine suture zone south of Taiwan, Tectonophysics 274, pp 5-24.
Maslin, M.A., and Thomas, E. 2003. Balancing the deglacial global carbon budget: the hydrate factor. Quaternary Science Reviews 22, pp 1,729–1,736.
Nimblett, J., and Ruppel, C. 2003. Permeability evolution during the formation of gas hydrates in marine sediments. Journal of Geophysical Research 108: doi:10.1029/2001JB001650.
Pecher, I.A., Kukowski, N., Ranero, C.R., and Huene, R.V. 2001. Gas hydrates along the Peru and Middle America trench systems. Natural Gas Hydrates: Occurrence, Distribution, and Detection. Geophysical Monograph Series. American Geophysical Union. Washington, D.C., pp. 257–271
Reed D.L., Lundberg, N., Liu, C.S., and Kuo, B.Y. 1992. Structural relations along the margins of the offshore Taiwan accretionary wedge: implication for accretion and crustal kinematics. Acta Geol. Taiwan 30, pp 105–122.
Ruppel, C. 2007. Tapping methane hydrates for unconventional natural gas. Elements.
Shyu, J.B.H., Sieh, K., Chen, Y.G. 2005. Tandem suturing and disarticulation of the Taiwan orogeny revealed by its neotectonic elements. Earth and Planetary Science Letters, 233(1-2), pp 167-177.
Sun, S.C. 1982. The Tertiary basin of offshore Taiwan. Proc. 2nd. ASCOPE Conf. Exhibition. Manila. Philippine, pp 126–135.
Sun, C.H., Chang, S.C., Kuo, C.L., Wu, J.C., Shao, P.H., and Oung, J.N. 2010. Origins of Taiwan’s mud volcanoes: evidence from geochemistry. Journal of Asian Earth Sciences Vol. 37, pp 105–116.
Tsai, Y.B., Ten, T.L., Chiu, J.M., and Liu, H.L. 1977. Tectonics implications of the seismicity in the Taiwan region. Mem. Geol. Soc. China
Xu, W., and Ruppel, C. 1999. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. Journal of Geophysical Research 104, pp 5,081–5,095.
Yu, S.B., Chen, H.Y., and Kuo, L.C. 1997. Velocity field of GPS stations in the Taiwan area. Tectonophysics 274, pp 41–59.
http://tecws.earth.sinica.edu.tw/BATS/images/twn_topo.gif
Barnes, A.E. 2007. A tutorial on complex seismic trace analysis. Geophysics.
Bacon, M., Simm, R., and Redshaw, T. 2003. 3-D Seismic Interpretation. Cambridge
University press.
Chen and Sidney. 1997. Seismic attribute technology for reservoir forecasting and monitoring. Lead. Edge, Vol.16, pp. 445-456.
Chopra, S., and Marfurt, K.J. 2005. Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series, Vol. 11, pp 464.
Doregowski, S.M., and Rocca, F. 1981. Geometrical optics and wave theory of constant offset sections in layered media. Geophysical Prospecting.
Enwenode, O. 2014. Seismic data analysis techniques in hydrocarbon exploration. Elsevier. Amsterdam, The Netherlands.
Hahn, S.L. 1996. Hilbert transforms in signal processing. Artech House, Inc. 685 Canton Street Norwood, MA 02062. ISBN 0-89006-886-0.
Hale, D. 1983. Dip-moveout by Fourier transform. Ph.D. dissertation. Stanford University. Also published as Stanford Exploration Project report Vol. 36.
Hale, D. 1984. Dip-moveout by Fourier transform. Geophysics, Vol. 49, pp 741-757.
Hale, D. 2006. Fast local cross correlation of images. 76th Annual International Meeting, SEG, Expanded Abstracts.
Jakubowicz, H. 1990. A Simple Efficient Method of dip-moveout Correction. Geophysical Prospecting, Vol.38, pp 221-245.
Karl, J.H. 1989. An introduction to digital signal processing. Academic Press, INC.
Kearey, P., Brooks, M., and Hill, I. 2002. An Introduction to Geophysical Exploration.
Blackwell Publishing.
Koson, S. 2014. Enhancing Geological Interpretation with Seismic Attributes in Gulf of Thailand. B.Sc. report, Chulalongkorn Uni, Thailand, pp 42.
Kumar, L., Sinha, D.P., SPIC., WOFF., ONGC., and Mumbai. 2008. From CMP to CRS: An Overview of Stacking Techniques of Seismic Data. 7th Biennial International Conference and Exposition on Petroleum Geophysics. HYDERABAD pp 414.
Neelamani, R., Dickens, T. A., and Deenbaug, M. 2006. Stack and de-noise: A new method to stack seismic datasets. 76th Annual International Meeting. SEG. Expanded Abstracts, 2827-2831.
Mayne, W. H. 1962. Common reflection point horizontal data stacking techniques. Geophysics, Vol.27, pp 927-938.
Mark, K. S. 1958. A Review of Method of Filtering Seismic Data. Geophysics, Vol. 13, pp 44-57.
Perez, M. A., and Henley, D. C. 2000. Multiple attenuation via predictive deconvolution in the radial domain. CREWES Research Report Vol. 12.
Peacock, K.L., and Treitel, S. 1969. Predictive deconvolution: theory and practice. Geophysics, Vol. 63, pp 155-169.
Pigott, J.D., Kang, M.H., and Han, H.C. 2013. First order seismic attributes for clastic seismic facies interpretation: Examples from the East China Sea. Journal of Asian Earth Sciences, Vol .66, pp 34-54.
Raef, A.E. 2001. Seismic modeling and multi attribute analysis-guiding applications of 3D seismic attributes to reservoir characterization. University of Science and Technology. Cracow, Poland.
Robinson, E., and Coruh, C. 1988. Basic exploration geophysics. New York.

Schneider, W. A. 1971. Developments in seismic data processing and analysis (1968-1970). Geophysics, Vol 36.
Schneider, W. A. 1978. Integral formulation for migration in two and three dimensions.
Geophysics, Vol.43.
Sheriff, R.E. 1991. Encyclopedic Dictionary of Exploration Geophysics. Society for Exploration Geophysicists. Tulsa.
Sheriff, R.E., and Geldart, L.P. 1995. Exploration Seismology. Cambridge University Press. New York, NY.
Taner, M. T., Koehier, F., and Sheriff, R. E. 1977. Complex Seismic Trace Analysis. J. Geophysics Vol. 44, no. 6, pp.1041 -1063.
Taner, M.T. 2001. Seismic Attributes, Rock Solid Images. Houston, TX, U.S.A., CSEG Recorder, September, 2001, pp. 48-56.
Vidale, J. 1988. Finite-difference calculation of travel-times. Bull. Seis. Society.
Michael, W. 2001. SEG Y rev1 Data Exchange Format. Society of Exploration Geophysicist.
Yilmaz, O. 1987. Seismic data processing. Soc. of Exploration Geophysics.
Yilmaz, O. 2001. Seismic data analysis: Processing, Inversion and Interpretation of Seismic Data. Society of Exploration Geophysicists. Tulsa. Vol.2.
Aki, K., and Richards, P.G. 1980. Quantitative Seismology, Theory and Methods. W.H. Freeman. San Fransisco, Vol.1.
Castagna, J. P. 1993. Petrophysical imaging using AVO. The Leading Edge, No. 3.
Castagna, J.P., and Smith, S. W. 1994. Comparison of AVO indicators: a modeling study. Geophysics. Presented at 63rd annual SEG meeting, Vol. 59, pp 1849–1855.
Castagna. J. P., and Swan, H.W. 1997. Principles of AVO cross-plotting. The Leading Edge., Vol. 16, pp 337–342.
Castagna, J.P., Swan, H.W., and Foster, D.J. 1998. Framework for AVO gradient and intercept interpretation. Geophysics. Society of Exploration Geophysicist. Vol. 63, pp 948–956.
Changcheng and Prasad. 2016. A New AVO Attribute for Hydrocarbon Prediction and Application to the Marmousi II Dataset. Adapted from extended abstract prepared in conjunction with oral presentation at AAPG/SEG International Conference & Exhibition. Melbourne, Australia.
Chopra, S., and Castagna, J.P. 2014. AVO: Investigations in Geophysics Series No. 16. Society of Exploration Geophysicists. USA, Vol.19.
Hampson, D., and Russell, B. 2004. AVO Theory. Lecture note. Rock Physics Laboratory. Stanford University.
Hong and John. 2006. AVO Principles, Processing and Inversion. CREWES Research Report, Vol. 18.
Jalali, V. 2014. Seismic AVO Attributes and Rock Physics in Hydrocarbon Exploration. Master Thesis. Eastern Mediterranean University.
Fatti, J, et al. 1994. Detection of gas in sandstone reservoirs using AVO analysis: A 3D case history using the Geostack technique. Geophysics.
Goodway, B., Chen, T., and Downton, J. 1997. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; λρ.,. μρ., &. λ μ fluid stack, from P and S inversions. 67th Ann. Internat. Mtg., Soc. Expl. Geophysics, Expanded Abstracts, pp 183–186.
Khalid, P., and Ghazi, S. 2013. Discrimination of fizz water and gas reservoir by AVO analysis: amodified approach. Acta Geod Geophysics, Vol. 48, pp 347–361.
Koefoed, O. 1955. On the effect of poisson’s ratios of rock strata on the reflection coefficients of plane waves. Geophysics Prospecting, Vol. 3, pp 381–387.
Lisle, R. J.1994. Detection of zones of abnormal strains in structures using Gaussian curvature analysis. AAPG Bulletin.
Ostrander, W.J. 1984. Plane wave reflection coefficients for gas sands at non-normal angles of incidence. Geophysics, Vol. 49, pp 1637–1648
Quakenbush, M., Shang, B., and Tuttle, C. 2006. Poisson impedance. Lead Edge. Vol. 25, pp 128–138.
Rutherford, S. R., and Williams, R.H. 1989. Amplitude versus-offset variations in gas sands. Geophysics, Vol. 54, pp 680–688.
Roberts, A. 2001. Curvature attributes and their application to 3D interpreted horizons. First Break. Sigismondi, E.M., and Soldo, C. J. 2003. Curvature attributes and seismic interpretation: Case studies from Argentina basins. The Leading Edge. Vol. 22, pp 1122-1126.
Shipley, T.H., and Didyk, B.M. 1982. Occurrence of methane hydrates offshore southern Mexico. Initial Reports of the Deep Sea Drilling Project.
Shuey, R.T. 1985. A simplification of the Zoeppritz equations. Geophysics, Vol. 50/4, pp 609-614.
Smith, G.C. and Gidlow, P.M. 1987, Weighted stacking for rock property estimation and detection of gas: Geophys. Prosp. Vol. 35/9, pp 993-1014.
Song, H.B., Matsubayashi, O., Yang, S.X., and Jiang, W. W. 2001. Geophysical Researches on Marine Gas Hydrates (II): Seismic Methods. Prog. Geophysics.
Swan, H.W. 1983. Properties of direct AVO Hydrocarbon Indicator, Offset-dependent Reflectivity Theory and Practice of AVO Analysis. Eds. John P. Castagna and Milo M. Backus. Society of Exploration Geophysics.
Tinivella, U., and F. Accaino. 2000. Compressional velocity structure and Poisson’s ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data (South Shetland Islands, Antarctica). Geology.
Tinivella, U., Accaino, F., and Vedova, B. D. 2008. Gas hydrates and active mud volcanism on the South Shetland continental margin. Antarctic Peninsula.
Veeken, P.C.H. 2006. Seismic Stratigraphy, Basin Analysis and Reservoir Characterisation. Handbook of Geophysical Exploration Series (eds K. Helbig and S. Treitel). Elsevier Scientific Publications (in press).
Verm, R., and Hilterman, F. 1995. Lithology colour coded seismic sections, the calibration of AVO crossplotting to rock properties. The Leading Edge, Vol. 14, pp 847–853.
Zhang, H., and Brown, R. J. 2001. A Review of AVO Analysis. CREWES Research Report. Vol. 13, pp 357-380.
Zoeppritz, K. 1919. Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves Gottinger Nachrichten, I, 66-84.
Bond, C. n. d. Snell’s Law. Retrieved from http://www.crbond.com/papers.htm.
Cameron, M. K., Fomel. S. B., and Sethian, J. A. 2007. Seismic velocity estimation from time migration: Inverse Problems. Vol. 23, pp 1329-1369.
Carcione, J. M., B ohm, G., and Marchetti, A. 1994. Simulation of a CMP seismic section. J. Seis. Expl., Vol.3, pp 381–396.
Dix, C. H. 1955. Seismic velocities from surface measurements. Geophysics, Vol. 20, pp 68-86.
Dondurur, D., and Cifci, G. 2001. Image characteristics of deep seismics in Calabria (S. Italy) using tomography and ray-tracing. Journal of the Balkan Geophysical Society, Vol. 5, No 2, May 2002, pp 21-34, 14 figs.
Fagin, S. W. 1991. Seismic Modeling of Geologic Structures. Geophysical Developments, SEG Pub., Vol.2,
Fomel, S. 2003. Time migration velocity analysis by velocity continuation. Geophysics. Vol. 68, pp 1662-1672.
Fomel, S. 2004. Recent advances in time-domain seismic imaging. 84th Annual International Meeting Expanded Abstracts. Society of Exploration Geophysicists, pp 4400-4404.
Holm, D. D. 2012. Fermat’s Principle and the Geometric Mechanics of Ray Optic. Imperial College London.
Hubral, P. 1977. Time migration some ray theoretical aspects: Geophysical Prospecting. Vol. 25, pp 738-745.
May, B. T., and Hron, F. 1978. Synthetic Seismic Section of Typical Petroleum Traps. Geophysics, Vol 43, No.11, pp 19- 1147.
McMechan, G.A. 1980. Modeling of Zero-Offset Reflection Profile with Asymptotic Ray Theory. Pacific Geoscience Centre, Earth Physics Branch, Department of Energy, Mines and Resource. Canada.
Paul, J. N. 2004. When Least is Best. Princeton University Press. Pp 101-135.
Ress, L. 2000. Notes on Huygens’s Principle. Brigham Young University.
Sripanich, Y., and Fomel, S. 2018. Fast time-to-depth conversion and interval velocity estimation in the case of weak lateral variations. Geophysics, Vol. 83, pp S227-S235.
Wesson, R. L. 1970. A Time Integration Method for Computation of the Intensities of Seismic Rays. Bull. Seism. Soc. Am 60, 307-316.
Yilmaz, O. 2001. Seismic Data Analysis. Society of Exploration Geophysicists.
Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., and Centuroni, L.R. 2015. The formation and fate of internal waves in the South China Sea. Nature.
Bouma, A.H., and Brouwer, A. 1964. Developments in Sedimentology 3: Turbidites. Elsevier, Amsterdam.
Carter, L., Gavey, R., Talling, P.J., and Liu, J.T. 2014. Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography.
Charles, V. C. 1967. Lamina, Laminaset, Bed and Bedset. Elsevier. Esso Production Research Company. USA.
Chen, C.S., Chen, Y.L., Liu, C.L., Lin, P.L., and Chen, W.C. 2007. Statistics of heavy rainfall occurrences in Taiwan. Weather Forecast.
Liu, C.S., Huang, I.L., and Teng, L.S. 1997. Structural Features Off Southwestern Taiwan. Elsevier. Marine Geology
Liu, J.T., Kao, S.J., Huh, C.A., and Hung, C.C. 2013. Gravity flows associated with flood events and carbon burial: Taiwan as instructional source area. Annu. Rev. Mar. Science.
Liu, J.T., Hsu, R.T., Hung, J.J., Kao, S.J., Chang, Y.P., Huh, C.A., Wang, Y.H., Lee, C.L., and Yang, R.J. 2015. From the highest to the deepest: The Gaoping River-submarine canyon dispersal system. Earth Science.
Lundberg, N., Reed, D., Liu, C.S., and Lieske Jr., J. 1992. Structural controls on orogenic sedimentation, submarine Taiwan collision. Acta Geol. Taiwan.
Middleton, G.V. 1993. Sediment deposition from turbidity currents. Annual Review of Earth and Planetary Sciences.
Milliman, J.D., and Kao, S.J. 2005. Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb at 1996 on Taiwanese rivers. Journal. Geology.
Nadim, F. 2012. Risk Assessment for Earthquake-Induced Submarine Slides. In: Yamada, Y., K. Kawamura, K. Ikehara, Y., Ogawa, R. Urgeles, D. Mosher, J. Chaytor, and M. Strasser (Eds.), Submarine Mass Movements and Their Consequences. Springer. Dordrecht.
Pickering, K., D. Stow, M. Watson, and R. Hiscott. 1986. Deep-water facies, processes and models: A review and classification scheme for modern and ancient sediments. Earth-Science Reviews.
Ramsey, L., Hovius, N., Lague, D., Liu, C.S. 2006. Topographic characteristics of the submarine Taiwan orogen. Journal. Geophysics.
Sultan, N., P. Cochonat, M. Canals, A. Cattaneo, B. Dennielou, H. Haflidason, J. S. Laberg, D. Long, J. Mienert, F. Trincardi, R. Urgeles, T. O. Vorren, and C. Wilson. 2004. Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach. Mar. Geol.
Shun, W.Y., Louis, L. T., Peter, J. T., Andrew, T. L., Horng, S.M., San,H.C., and Chorng, S.H. 2017. Sea level and climatic controls on turbidite occurrence for the past 26 kyr on the flank of the Gaoping Canyon off SW Taiwan.Elsevier. Marine Geology.
Tsao, C.Q., and Chang, M. 1988. Study of petroleum potential in Oligocene sandstone of Tainan Basin. Min. Metall.
Yu, H.S., Chiang, C.S., and Shen, S.M. 2009. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. J. Mar. Syst.
www.Indiana.edu
https://oceanservice.noaa.gov
指導教授 陳浩維(Chen How Wei) 審核日期 2019-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明