博碩士論文 105623016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.138.141.202
姓名 楊昀蓁(Yun-Chen Yang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 使用SDO / AIA觀測閃焰亮帶之運動情形
(Elongation and Separation of Flare Ribbons by Using SDO/AIA)
相關論文
★ 臺灣銀行業財務績效、內部人持股及董監事薪酬重要影響因素研析★ 磁雲結構與其起始區域之多點觀測分析
★ 強烈太陽閃焰之電場估算及其與X射線之關係★ 太陽閃焰硬X射線與微波觀測結合雙注入電子群之非熱輻射模擬研究
★ IRIS Mg II譜線之太陽閃焰色球加熱現象研究★ 太陽閃焰爆發前準週期脈衝之多波段觀測分析
★ 第三型無線電波爆在不同太陽閃焰相位之研究★ STEREO衛星之太陽高能質子特性與其加速源分析
★ 日冕洞演化與高速太陽風之關係★ 內太陽圈行星際三型太陽無線電波爆之特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 紫外線波段所觀察到的閃焰亮帶結構,可能是由於閃焰環頂磁場重構區域的加速粒子撞擊至低層大氣而產生,也可能與熱傳導效應有關。二維標準閃焰模型雖然可以定性解釋磁場重構所造成的成對亮帶相對於磁極反轉線彼此遠離的現象,但觀測上明顯能看到閃焰亮區也有沿著磁極反轉線方向上的變化。為了探討此一現象,本篇論文使用SDO/AIA 1600 A影像分析2011年2月到2014年12月間的46起閃焰事件,將累計亮度圖中的最大梯度處視為亮帶邊緣,藉以估算亮帶兩端點的延展運動及亮帶最外緣的分離運動情形,發現在閃焰的主要能量釋放階段,亮帶的平均延展速率(約56 km/s)大於分離速率(約26 km/s)。並根據磁極反轉線兩側的亮帶延展方向將事件分成三類:(1)兩側亮帶主要延展方向相同,共18起事件,(2)兩側亮帶延展方向相反,共23起事件,(3)只有一側亮帶有明顯延展運動的事件有5起。我們的研究結果顯示,此三類的亮帶延展速率與F ?_SXR和????????的峰值及???????? fluence並沒有很好的相關性,但發現較大的閃焰似乎較好發於亮帶延展方向相反的事件,其背後的物理意義有待將來再詳加仔細研究。
摘要(英) The flare ribbon structure seen in ultraviolet images can be either caused by the flare-accelerated particles impacting on the lower solar atmosphere or related to the thermal conduction. Besides the separation between two ribbons expected by the CSHKP model, the elongation of flare ribbons along the magnetic polarity inversion line is also observed. In order to figure out the possible causes of ribbon elongation, we used the SDO/AIA 1600 A data in this study to analyze 46 selected flare events from 2011 February to 2014 December. The maximum gradient of brightening in a stack-plot is taken as the outermost boundary of a flare ribbon for speed estimations. We found that in the impulsive phase, the averaged elongation speed (~56 km/s) is larger than the averaged separation speed (~26 km/s). In addition, the elongation motion can be classified into three groups, namely, the same direction between two ribbons (18 events in total), the opposite directions (23 events in total) between two ribbons, and the motion only seen in one side of flare ribbons (5 events in total). There is no apparent correlation between the elongation speed and the peak of F ?_SXR and F_SXR, and the F_SXR fluence. But those flares with the larger F_SXR peak or the larger F_SXR fluence are likely to be associated with the opposite elongation, which can be studied more detailed in a future.
關鍵字(中) ★ 太陽
★ 閃焰
★ 亮帶
關鍵字(英) ★ solar
★ flare
★ ribbon
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 太陽閃焰 1
1.2 二維標準閃焰模型 4
1.3 相關文獻回顧 10
1.4 F_SXR 與 F_HXR 14
1.5 研究動機 17
第二章 方法與資料 18
2.1 觀測儀器與資料 18
2.1.1 AIA 18
2.1.2 HMI 21
2.2 資料選取來源 23
2.3 累計圖 (stack-plot) 24
2.4 速率的估算 29
第三章 資料分析與結果 30
3.1 平行方向的亮帶延展 31
3.1.1 同向 31
3.1.2 反向 36
3.1.3 單側延展 40
3.2 垂直方向的分離運動 44
3.3 二次爆發的事件 47
3.4 總結 49
第四章 討論 52
4.1 造成磁場重構之可能原因 52
4.2 磁場重構區域之能量釋放 58
4.3 線性磁流體波傳遞擾動 64
第五章 結論 65
參考文獻 67
參考文獻 Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. (1999). A model for solar coronal mass ejections. The Astrophysical Journal, 510(1), 485.
Asai, A., Nakajima, H., Shimojo, M., White, S. M., Hudson, H. S., & Lin, R. P. (2006). Preflare nonthermal emission observed in microwaves and hard X-rays. Publications of the Astronomical Society of Japan, 58(1), L1-L5.
Aschwanden, M. (2006). Physics of the solar corona: an introduction with problems and solutions. Springer Science & Business Media.
Carmichael, H. (1964). A process for flares. NASA Special Publication, 50, 451.
Chen, P. F., & Shibata, K. (2000). An emerging flux trigger mechanism for coronal mass ejections. The Astrophysical Journal, 545(1), 524.
Chen, H., Zhang, J., Li, L., & Ma, S. (2016). Tether-cutting reconnection between two solar filaments triggering outflows and a coronal mass ejection. The Astrophysical Journal Letters, 818(2), L27.
Cheng, J. X., Kerr, G., & Qiu, J. (2012). Hard X-ray and ultraviolet observations of the 2005 January 15 two-ribbon flare. The Astrophysical Journal, 744(1), 48.
Dennis, B. R., & Zarro, D. M. (1993). The Neupert effect: what can it tell us about the impulsive and gradual phases of solar flares?. Solar Physics, 146(1), 177-190.
Fletcher, L., & Hudson, H. (2001). The magnetic structure and generation of EUV flare ribbons. Solar Physics, 204(1-2), 69-89.
Grigis, P. C., & Benz, A. O. (2005). The evolution of reconnection along an arcade of magnetic loops. The Astrophysical Journal Letters, 625(2), L143.
Hassanin, A., & Kliem, B. (2016). Helical kink instability in a confined solar eruption. The Astrophysical Journal, 832(2), 106.
Hirayama, T. (1974). Theoretical model of flares and prominences. Solar Physics, 34(2), 323-338.
Hudson, H. S. (1991). Differential Emission-Measure Variations and the" Neupert Effect". In Bulletin of the American Astronomical Society (Vol. 23, p. 1064).
Inglis, A. R., & Gilbert, H. R. (2013). Hard X-ray and ultraviolet emission during the 2011 June 7 solar flare. The Astrophysical Journal, 777(1), 30.
Isobe, H., Shibata, K., & Machida, S. (2002). “Dawn?dusk asymmetry” in solar coronal arcade formations. Geophysical research letters, 29(21).
Isobe, H., Takasaki, H., & Shibata, K. (2005). Measurement of the energy release rate and the reconnection rate in solar flares. The Astrophysical Journal, 632(2), 1184.
Ji, H., Huang, G., & Wang, H. (2007). The relaxation of sheared magnetic fields: a contracting process. The Astrophysical Journal, 660(1), 893.
Katz, N., Egedal, J., Fox, W., Le, A., Bonde, J., & Vrublevskis, A. (2010). Laboratory observation of localized onset of magnetic reconnection. Physical review letters, 104(25), 255004.
Kawaguchi, I., Kurokawa, H., Funakoshi, Y., & Nakai, Y. (1982). Progressive brightenings observed in the wing of Hα line. Solar Physics, 78(1), 101-105.
Kitahara, T., & Kurokawa, H. (1990). High-resolution observation and detailed photometry of a great Hα two-ribbon flare. Solar physics, 125(2), 321-332.
Kopp, R. A., & Pneuman, G. W. (1976). Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Physics, 50(1), 85-98.
Krucker, S., Hurford, G. J., & Lin, R. P. (2003). Hard X-ray source motions in the 2002 July 23 gamma-ray flare. The Astrophysical Journal Letters, 595(2), L103.
Lemen J.R. et al. (2011) The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). In: Chamberlin P., Pesnell W.D., Thompson B. (eds) The Solar Dynamics Observatory. Springer, New York, NY
Li, L., & Zhang, J. (2009). On the brightening propagation of post-flare loops observed by TRACE. The Astrophysical Journal, 690(1), 347.
Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. (2001). Onset of the magnetic explosion in solar flares and coronal mass ejections. The Astrophysical Journal, 552(2), 833.
Moore, R. L., & Sterling, A. C. (2006). Initiation of coronal mass ejections. GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION, 165, 43.
Mullan, D. J. (2009). Physics of the Sun: A first course. Chapman and Hall/CRC.
Qiu, J., Lee, J., Gary, D. E., & Wang, H. (2002). Motion of flare footpoint emission and inferred electric field in reconnecting current sheets. The Astrophysical Journal, 565(2), 1335.
Qiu, J., Wang, H., Cheng, C. Z., & Gary, D. E. (2004). Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. The Astrophysical Journal, 604(2), 900.
Qiu, J., Liu, W., Hill, N., & Kazachenko, M. (2010). Reconnection and energetics in two-ribbon flares: A revisit of the Bastille-Day flare. The Astrophysical Journal, 725(1), 319.
Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema, J. T., ... & Tarbell, T. D. (2012). The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Physics, 275(1-2), 207-227.
Somov, B. V. (2013). The Bastille Day Flare and Similar Solar Flares. In Plasma Astrophysics, Part II (pp. 109-141). Springer, New York, NY.
Sturrock, P. A. (1966). Model of the high-energy phase of solar flares. Nature, 211(5050), 695.
Temmer, M., Veronig, A. M., Vr?nak, B., & Miklenic, C. (2007). Energy release rates along Hα flare ribbons and the location of hard X-ray sources. The Astrophysical Journal, 654(1), 665.
Torok, T., Kliem, B., & Titov, V. S. (2004). Ideal kink instability of a magnetic loop equilibrium. Astronomy & Astrophysics, 413(3), L27-L30.
Tripathi, D., Isobe, H., & Mason, H. E. (2006). On the propagation of brightening after filament/prominence eruptions, as seen by SoHO-EIT. Astronomy & Astrophysics, 453(3), 1111-1116.
Tsuneta, S., Hara, H., Shimizu, T., Acton, L. W., Strong, K. T., Hudson, H. S., & Ogawara, Y. (1992). Observation of a solar flare at the limb with the YOHKOH Soft X-ray Telescope. Publications of the Astronomical Society of Japan, 44, L63-L69.
Veronig, A. M., Brown, J. C., Dennis, B. R., Schwartz, R. A., Sui, L., & Tolbert, A. K. (2005). Physics of the Neupert effect: Estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. The Astrophysical Journal, 621(1), 482.
Vorpahl, J. A. (1976). The triggering and subsequent development of a solar flare.
Wang, H., Qiu, J., Jing, J., & Zhang, H. (2003). Study of ribbon separation of a flare associated with a quiescent filament eruption. The Astrophysical Journal, 593(1), 564.
指導教授 楊雅惠(Ya-Hui Yang) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明