博碩士論文 105624001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.36.10
姓名 林秀俊(Hsiu-Chun Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用岩心之孔隙率及滲透率量測結果推算孔隙率與滲透率隨深度之變化
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究考量了岩性、力學壓密和應力歷史對沉積岩孔隙率和滲透率的影響,利用TPCS-M1鑽井岩心的孔隙率和滲透率量測結果,建立應力歷史相依孔隙率及滲透率模型以計算TPCS-M1鑽井地層的孔隙率和滲透率。首先將TPCS-M1試體依粒徑分析結果把岩性劃分為四群(砂岩類、泥質砂岩類、砂質泥岩類及泥岩類),其後量測各試體於不同有效圍壓下的孔隙率和滲透率,並建立此四群岩類的應力歷史相依孔隙率/滲透率模型,最後利用此模型計算鑽井地層的孔隙率和滲透率隨深度之變化。為檢驗計算所得的孔隙率結果之合理性,本研究蒐集井測之孔隙率資料並和計算結果進行比較。結果發現,砂岩類地層中,本研究計算之孔隙率非常接近中子井測/密度井測所推求的孔隙率(僅略低估於1 - 3 %),而四種岩性的孔隙率計算結果則介於中子井測/密度井測與波速井測的推求結果之間。另外,本研究亦計算鑽井地層解壓至常壓下時的孔隙率,發現和台電報告中之常壓下影像孔隙率在各深度間隨岩性的跳動情形有大致相同的趨勢,以上顯示本研究以岩心試驗結果和應力歷史相依孔隙率模型,可合理估計砂岩孔隙率且可評估地層的孔隙率在各深度間隨岩性的變化趨勢。另一方面,本研究根據四群岩類之應力歷史相依孔隙率-滲透率關係方程式,可快速地從井測資料推算滲透率,並與透過試驗結果所計算的滲透率進行比較。結果發現,透過孔隙率-滲透率關係式所計算的滲透率,和利用試驗結果所計算的滲透率,在相同岩段下,其兩者差異不大,皆不超過一個數量級,但在不同岩段的滲透率卻相差甚鉅,顯示地層岩性的劃分與建立結果對於滲透率的推算有非常顯著的影響,因此若希望以上述兩種方法來推算地層滲透率隨深度的變化,則地層岩性的劃分與建立將為最重要的課題。
摘要(英) To calculate the porosity-depth and permeability-depth relationship in TPCS-M1 borehole, we establish the stress-history dependent porosity/permeability model of rock cores based on rock sample porosity/permeability measurements. First, we categorize the sedimentary lithology of each rock samples into four types (sandstone, muddy sandstone, sandy mudstone and mudstone) according to their pore size distribution information. Second, we measure the porosity/permeability of sedimentary rock samples under various effective confining pressure to establish the stress-history dependent porosity/permeability model for four types of sedimentary rocks. Last, we calculate the porosity-depth and permeability-depth relationship in TPCS-M1 borehole based on these model. To check if the calculated porosity is reasonable or not, we compare the calculated result with porosity derived from log and porosity derived from image of thin section. We find using porosity measurement from lab and stress-history dependent porosity model can well calculate the porosity in sandstone layer, and also can estimate the trend of porosity changing in depth with lithology. On the other hand, we use the porosity derived from log and stress-history dependent porosity-permeability relationship for four types of sedimentary rocks to quickly estimated the permeability, comparing with the calculated permeability. The result shows that, the permeability estimated by the stress-history dependent porosity-permeability relationship is always close to the permeability calculated by experimental data and stress-history dependent permeability model in the same layer (same lithology type and depth), but totally different in different layer, it indicates the result of categorizing and building the strata’s lithology will significantly influence the permeability estimated result. Thus, if we want to estimate the permeability-depth relationship by these two methods, the most critical issue will be how to well categorize and build the strata’s lithology.
關鍵字(中) ★ 孔隙率
★ 滲透率
★ 沉積岩岩性
★ 力學壓密
★ 應力歷史
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
一、緒論 1
1.1 研究動機與目的 1
1.2 研究流程與論文架構 2
1.3 論文架構 5
二、文獻回顧 6
2.1 影響沉積岩孔隙率與滲透率之因素 6
2.2 以岩心試驗結果計算孔隙率/滲透率隨深度變化之研究案例 12
2.2.1 以TCDP深井岩心計算鑽井地層孔隙率隨深度之變化 12
2.2.2 以三鶯淺井岩心計算桃園近海地層孔隙率隨深度之變化 15
2.2.3 以北海道地表露頭及鑽井岩心推算地層之滲透率分布 18
2.3 二氧化碳封存先導試驗場址之計畫-TPCS-M1鑽井 20
三、研究方法 23
3.1 實驗試體來源 23
3.2 鑽井岩心之岩性分類 28
3.2.1 粒徑分析 28
3.2.2 碎屑沉積岩之岩性分類法 29
3.3 鑽井地層之岩性劃分建立方法 30
3.4 室內孔隙率/滲透率之量測方法 31
3.4.1 孔隙率之量測 31
3.4.2 滲透率之量測 35
3.4.3 克林堡效應修正 36
3.5 應力歷史相依孔隙率/滲透率模型 38
3.5.1 試體最大預壓密應力之決定方法 38
3.5.2 應力歷史相依孔隙率/滲透率模型 42
3.5.3 應力歷史相依孔隙率-滲透率關係式 44
3.6 孔隙率隨深度之變化 45
3.6.1 以岩心試驗結果計算孔隙率 45
3.6.2 以井測結果推算孔隙率 45
3.7 滲透率隨深度之變化 46
3.7.1 以岩心試驗結果計算滲透率 46
3.7.1 以井測結果推算滲透率 46
四、研究成果 47
4.1 孔隙率/滲透率之量測結果 47
4.2 粒徑分布與岩性分類 49
4.3 應力歷史相依孔隙率/滲透率模型 54
4.4 鑽井地層之岩性劃分結果 60
4.5 孔隙率隨深度變化之分布結果 68
4.5.1 以岩心試驗結果計算現地孔隙率之結果 68
4.5.2 以密度井測推算現地孔隙率之結果 70
4.6 滲透率隨深度變化之分布結果 72
4.6.1 以岩心試驗結果計算現地滲透率之結果 72
4.6.2 以中子井測推算現地滲透率之結果 74
4.6.3 以密度井測推算現地滲透率之結果 76
五、討論 78
5.1 影響孔隙率/滲透率隨深度變化之計算的因素探討 78
5.1.1 軸差應力對於現地有效應力之影響 78
5.1.2 試體的最大預壓密應力之選取 81
5.1.3 不同岩性之沉積岩模型參數 87
5.2 以試驗結果與井測結果推算現地孔隙率之比較 90
5.3 計算解壓至常壓下的孔隙率與影像孔隙率之比較 97
5.4 以試驗結果與井測結果推算現地滲透率之比較 99
六、結論 102
參考文獻 105
附錄A 111
附錄B 137
參考文獻 江紹平,2007,「台灣中部早期前陸盆地的地層紀錄」,國立中央大學,碩士論文。
余允辰,2011,「台灣西北部麓山帶沉積岩的孔隙率-滲透率曲線與微觀構造」,國立中央大學,碩士論文。
吳文傑,2009,「應力歷史相關之沉積岩孔隙率模型」,國立中央大學,碩士論文。
林怡男,2009,「應力歷史對麓山帶沉積岩孔隙率及滲透率應力相依模式影響之探討」,國立中央大學,碩士論文。
財團法人中興工程顧問社,2014,「二氧化碳地質封存先導試驗場址地質調查及技術研發(一)」,台灣電力公司,期末報告。
許瑞育,2007,「沉積岩應力相關之流體特性與沉積盆地之孔隙水壓異常現象」,國立中央大學,碩士論文。
焦中輝、林俊余、俞旗文、盧佳遇,2010,「台西盆地南段晚中新世至更新世沉積地層作為碳地質封存層之探討研究」,中國礦冶工程學會,第55期,第109-128頁。
楊耿明、黃旭燦、丁信修、吳榮章、紀文榮、梅文威、徐祥宏、宣大衡,2003,「台灣麓山帶及變形前緣斷層構造分析研究」,探採研究彙報,第25期,第45-72頁。
楊盛博,2015,「利用深井岩心探討岩性及構造作用對碎屑沉積岩孔隙率和滲透率之影響」,國立中央大學,碩士論文。
楊智豪,2014,「台西盆地南側深井岩心孔隙率與滲透率之初步研究」,國立臺灣海洋大學,碩士論文。
劉建麟,2014,「利用電測資料推估台灣彰濱地區鑽井場址的地下應力場」,國立中央大學,碩士論文。
Athy, L. F., 1930. Density, porosity and compaction of sedimentary rocks, American Association of Petroleum Geologists Bulletin, Vol. 14, pp. 1-24.
Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, P., and Mathiassen, O. M., 2007. CO2 storage capacity estimation: Methodology and gaps, International Journal of Greenhouse Gas Control, Vol. 1, pp. 430-443.
Bachu, S., 2003. Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change, Environmental Geology, Vol. 44, No. 3, pp. 277-289.
Baines, S. J., and Worden, R. H., 2004. Geological Storage of Carbon Dioxide, Geological Society, London, Special Publications, Vol. 233, pp. 1-6.
Bjorlykke, K., 2014. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins, Journal of Sedimentary Geology, Vol. 301, pp. 1-14.
Bryant, S. L., Cade, C. A., and Evans, I. J., 1994. Analysis of permeability controls: a new approach, Journal of Clay Minerals, Vol. 29, pp. 491-501.
Cather, M. E., Morrow, N. R., and Klich, I., 1991. Characterization of porosity and pore quality in sedimentary rocks, Studies in Surface Science and Catalysis, Vol. 62, pp. 727-736.
David, C., Wong, T. F., Zhu, W., and Zhang, J., 1994. Laboratory measurement of compaction-induced permeability change in porous rocks: implication for the generation and maintenance of pore pressure excess in the crust, Pure and Applied Geophysics, Vol. 143, No. 1, pp. 425-456.
Dewhurst, D. N., Aplin, A. C., Sarda, J. P., and Yang, Y., 1998. Compaction-driven evolution of porosity and permeability in natural mudstones: an experimental study, Journal of Geophysical Research, Vol. 103, No. B1, pp. 651-661.
Dickinson, G., 1953. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisana, The American Association of Petroleum Geologists Bulletin, Vol. 37, pp. 410-432.
Dong, J. J., Hsu, J. Y., Wu, W. J., Shimamoto, T., Hung, J. H., Yeh, E. C., Wu, Y. H., and Sone, H., 2010. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A, International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 1141-1157.
Ellis, D. V., 1986. Neutron porosity logs: what do they measure?, First Break, Vol. 4, No. 3, pp. 11-17.
Eslinger, E., and Pevear, D., 1988. Clay minerals for petroleum geologists and engineers, Society for Economic Paleontologists and Mineralogists, Tulsa, USA. SEPM short course notes, 22.
Gregory, A. S., Whalley, W. R., Watts, C. W., Bird, N. R. A., Hallett, P. D., and Whitmore, A. P., 2006. Calculation of the compression index and precompression stress from soil compression test data, Soil and Tillage Research, Vol. 89, pp. 45-57.
Hoholick, J. D., Metarko, T., and Potter, P. E., 1984. Regional variations of porosity and cement: St. Peter and Mount Simon Sandstones in Illinois Basin, The American Association of Petroleum Geologists Bulletin, Vol. 68, pp. 753-764.
Holloway, S., and Savage, D., 1993. The potential for aquifer disposal of carbon dioxide in the UK, Energy Conversion and Management, Vol. 34, pp. 925-932.
Holtz, R. D., and Kovacs, W. D., 1981. An Introduction to Geotechnical Engineering, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
Hung, J. H., Ma, K. F., Wang, C. Y., Ito, H., Lin, W., and Yeh, E. C., 2009. Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu fault Drilling Project, Tectonophisics, Vol. 466, pp. 307-321.
Jones, M. E., and Addis, M. A., 1985. On changes in porosity and volume during burial of argillaceous sediments, Marine and Petroleum Geology, Vol. 2, pp. 247-253.
Juanes, R., Spiteri, E. J., Orr Jr, F. M., and Blunt, M. J., 2006. Impact of relative permeability hysteresis on geological CO2 Storage, Water Resources Research, Vol. 42, 12.
Klinkenberg, L. J., 1941. The Permeability of Porous Media to Liquids and Gases, Drilling and Production Practices, American Petroleum Institute.
Lin, A. T., and Watts, A. B., 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, Journal of Geophysical Research, Vol. 107, NO. B9.
Lin, A. T., Wang, S. M., Hung, J. H., Wu, M. S., and Liu, C. S., 2007. Lithostratigraphy of the Taiwan Chelungpu-fault Drilling Project-A borehole and its neighboring region, central Taiwan, Terrestrial Atmospheric and Oceanic Sciences, Vol. 18, No. 2, pp. 223-241.
Lin, A. T., Watts, A. B., and Hesselbo, S. P., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Research, Vol. 15, pp. 453-478.
Lin, C, K., 2008. Algorithm for determining optimum sequestration depth of CO2 trapped by residual gas and solubility trapping mechanisms in a deep saline formation, Geofluids, Vol. 8, pp. 333-343.
Mondol, N. H., Bjorlykke, K., Jahren, J., and Hoeg, K., 2007. Experimental mechanical compaction of clay mineral aggregates – Changes in physical properties of mudstones during burial, Marine and Petroleum Geology, Vol. 24, pp. 289-311.
Morrow, C. A., Shi, L. Q., and Byerlee, J. D., 1984. Permeability of fault gouge under confining pressure and shear stress, Journal of Geophysical Research, Vol. 89, No. B5, pp. 3193-3200.
Nagtegaal, P. J. C., 1980. Clastic reservoir rocks – origin, diagenesis, and quality, Presented at the International Meeting of Petroleum Geology.
Picard, M. D., 1971. Classification of fine-grained sedimentary rocks, Journal of Sedimentary Research, Vol. 41, pp. 179-195.
Scherer, M., 1987. Parameters influencing porosity in sandstones: a model for sandstone porosity prediction, The American Association of Petroleum Geologists Bulletin, Vol. 71, pp. 485-491.
Schmoker, J. W., and Halley, R. B., 1982. Carbonate porosity versus depth: A predictable relation for south Florida, The American Association of Petroleum Geologists Bulletin, Vol. 66, pp. 2561-2570.
Shi, T., and Wang, C. Y., 1986. Pore pressure generation in sedimentary basins: overloading versus aquathermal, Journal of Geophysical Research, Vol. 91, No. B2, pp. 2153-2162.
Tanikawa, W., and Shimamoto, T., 2009. Comparison of Klinkenberg-corrected gas 123 permeability and water permeability in sedimentary rocks, International Journal of Rock Mechanics & Mining Sciences, Vol. 46, pp. 229-238.
Terzaghi, K., 1925. Principles of soil mechanics: IV – settlement and consolidation of clay, Engineering News – Record, Vol. 95, No. 19, pp. 874-878.
Uehara, S. I., Shimamoto, T., Okazaki, K., Hironori, F., Kurikami, H., Niizato, T., and Ohnishi, Y., 2012. Can surface samples be used to infer underground permeability structure? A test case for a Neogene sedimentary basin in Horonobe, Japan, International Journal of Rock Mechanics & Mining Sciences, Vol. 56, pp. 1-14.
Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments, Journal of Geology, Vol. 30, pp. 79-99.
Wu, W. J., Dong, J, J., Lin, T. S., Yu, Y. C., Pan, Y. T., Tong, L. T., Li, M. H., Ni, C. F., and Shimamoto, T., 2017. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan, Terrestrial Atmospheric and Oceanic Sciences, Vol. 28, No. 3, pp. 247-258.
Yang, Y., and Aplin, A. C., 2007. Permeability and petrophysical properties of 30 natural mudstones, Journal of Geophysical Research, Vol. 112, pp. 1-24.
指導教授 董家鈞 審核日期 2018-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明