博碩士論文 105624002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.80.85.76
姓名 吳士愷(Shih-Kai Wu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 受非平衡吸附影響下滲透性反應牆-含水層 雙區系統中多物種傳輸解析解模式
(Analytical model for multispecies transport in a permeable reactive barrier- aquifer system subject to nonequilibrium)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-8-31以後開放)
摘要(中) 由於滲透性反應牆(permeable reactive barrier, PRB)與含水層兩者的材料特性不同,因此污染物在滲透性反應牆-含水層系統的傳輸行為較為複雜。雙區污染傳輸解析解模式是評估滲透性反應牆-含水層系統功能表現的重要工具。前人所提出的雙區污染傳輸解析解模式多考慮單一物種污染物,而滲透性反應牆常處理的含氯有機溶劑污染物在傳輸的過程中會產生一序列的降解而產生其他產物,因此單一物種雙區污染傳輸解析解模式不適合來評估含氯有機溶劑污染物在滲透性反應牆-含水層系統的傳輸行為。過去雙區多物種傳輸解析解模式發展較少,且前人都考慮平衡吸附的情形。然而文獻指出,非平衡吸附作用對於溶質傳輸有很大的影響。本研究目的為發展考慮非平衡吸附的雙區多物種傳輸解析解模式來調查滲透性反應牆-含水層系統的傳輸行為。研究中利用Laplace轉換消去時間微分項來求解一組耦合的移流-延散方程式,並撰寫FORTRAN程式執行解析解模式的計算。所得解析解與相對應的數值解比較,兩者非常吻合,證明解析解的正確性與FORTRAN計算程式的準確性,所發展的模式調查滲透性反應牆-含水層系統的傳輸行為發現平衡吸附的假設會低估污染物的濃度,並高估滲透性反應牆的整治效率。
摘要(英) The transport behavior of contaminants in a permeable reactive barrier (PRB)- aquifer system is complicated because of the differences in the physical and chemical properties of the PRB and the aquifer. However, dual-domain contaminant transport models are efficient tools for predicting and describing the movement of contaminants in a PRB–aquifer system. Multispecies transport models should have the ability to account for mass accumulation of the parent species while simultaneously considering the distinct transport and reactive properties of both the parent and daughter species during the transport of a degradable contaminant such as a dissolved chlorinated solvent. For mathematical simplicity, the current multispecies dual-domain transport analytical models are derived assuming equilibrium sorption. However, experimental and theoretical studies have indicated that this assumption may not be adequate and that nonequilibrium sorption could have a profound effect upon solute transport in the subsurface environment. This study presents an analytical model for multispecies transport in a PRB-aquifer system subject to nonequilibrium sorption in which the first-order reversible kinetic sorption reaction equation systems are incorporated into two sets of simultaneous advection-dispersion equations coupled together by a sequential first-order decay reaction that describes multispecies nonequilibrium transport in both the PRB and the aquifer. The analytical solutions to the complicated governing equation systems are derived with the aid of the Laplace transform and verified by comparing the computational results against those obtained using a numerical model in which the same governing systems are solved using the advanced Laplace transform finite difference method. Finally, the derived analytical model is used to investigate how the sorption reaction rate influences the performance of a PRB-aquifer system.
關鍵字(中) ★ 滲透性反應牆
★ 解析解
關鍵字(英) ★ PRB
★ Analytical model
論文目次 摘要 v
ABSTRACT vii
致謝 ix
TABLE OF CONTENTS x
LIST OF FIGURES xi
LIST OF TABLES xii
NOTATION xiii
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Literature Review 3
1-3 Objectives 6
Chapter 2 Development of Analytical Model 7
2-1 Governing equations 7
2-2 Derivation of analytical solutions 11
Chapter 3 Results and Discussion 23
3-1 Verification 26
3-2 Comparison of analytical solutions with numerical solutions 29
3-3 Effect of the PRB length L 32
Chapter 4 Conclusions and Suggestions for Future Research 37
REFERENCES 39
參考文獻 Aziz, C. E., Newell, C. J., Gonzales, J. R., and Jewett, D. G., “BIOCHLOR Natural Attenuation Decision Support System User′s Manual Version 1.0.”, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 2000.
Ball, W. P., “Equilibrium sorption and diffusion rate studies with halogenated organic chemical and sandy aquifer material”, Ph.D. dissertation, 356, Stanford Univ., Stanford, Calif., 1989.
Brusseau, M. L., Larsen, T., and Christensen T.H., “Rate-limited sorption and nonequilibrium transport of organic chemicals in low organic carbon aquifer materials”, Water Resources Research, Vol. 27(6), 1137-1145, 1991.
Brusseau, M. L.; Rao, P., and Gillham, R. W., “Sorption nonideality during organic contaminant transport in porous media”, CRC Crit. Rev. Environ. Control, 19(1), 33-99, 1989.
Chen, J. S., Ni, C. F., Liang, C. P., and Chiang, C. C., “Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity”, Journal of Hydrology, 362, 142–149, 2008a.
Chen, J. S., Ni, C. F., and Liang, C. P., “Analytical power series solutions to the two-dimensional advection-dispersion equation with distance-dependent dispersivities”, Hydrological Processes, 22, 4670–4678, 2008b.
Chen, J. S., Liu, Y. H., Liang, C. P., Liu, C. W., and Lin, C. W., “Exact analytical solutions for two-dimensional advection-dispersion equation in cylindrical coordinates subject to third-type inlet boundary condition”, Advances in Water Resources, 34, 365–374, 2011.
Chen, J. S., Hsu, S. Y., Li, M. S., and Liu, C. W., “Assessing the performance of a permeable reactive barrier–aquifer system using a dual-domain solute transport model”, Journal of Hydrology, 543, 849–860, 2016.
Clement, T. P., “RT3D—A modular computer code for simulating reactive multispecies transport in 3-dimensional groundwater aquifers”, Battelle Pacific Northwest National Laboratory, PNNL-SA-28967, 1997.
Clement, T. P., Gautam T. R., Lee, K. K., Truex, M. J., and Davis, G. B., “Modeling of DNAPL-Dissolution, Rate-Limited Sorption and Biodegradation Reactions in Groundwater Systems”, Bioremediation Journal, 8(1-2), 47-64, 2004.
de Hoog, F. R., Knight, J. H., and Stokes, A. N., “An improved method for numerical inversion of Laplace transforms”, SIAM Journal on Scientific and Statistical Computing, 3 (3), 357– 366,1982.
Eykholt, G. R., Elder, C. R., and Benson, C. H., “Effect of aquifer heterogeneity and reaction mechanism uncertainty a reactive barrier”, Journal of Hazardous Materials, 68 (1–2), 73–96, 1999.
Goltz, M. N.; Roberts, P. V., “Simulations of physical solute transport models: Application to a large-scale field experiment”, Journal of Contaminant Hydrology, 3(1), 37-63, 1988.
Leji, F. J., Skaggs, T. H., and van Genuchten, M. Th., “Analytical solution for solute transport in three-dimensional semi-infinite porous media”, Water Resources Research, 27(10), 2719-2733, 1991a.
Leij, F. J., Dane, J. H., and van Genuchten, M. Th., “Mathematical analysis of one-dimensional solute transport in a layered soil profile”, Soil Science Society of America Journal, 35 (7– 8), 944–953, 1991c.
Leij, F. J., Toride, N., and van Genuchten, M. Th., “Analytical solutions for nonequilibrium solute transport in three-dimensional porous media”, Journal of Hydrology, 151, 193–228,1993.
Leji, F. J., and van Genuchten, M. Th., “Approximate analytical solutions for solute transport in two-layer porous media”, Transport Porous Media, 18, 65-85, 1995.
Li, Y. C., and Cleall, P. J., “Analytical solutions for advective-dispersive solute transport in double-layered finite porous media”, International Journal for Numerical and Analytical Methods in Geomechanics, 35, 438–460, 2011.
Mieles, J., and Zhan, H. B., “Analytical solutions of one-dimensional multispecies reactive transport in a permeable reactive barrier-aquifer system”, Journal of Contaminant Hydrology, 134–135, 54–68, 2012.
Nkedi-Kizza, P., Rao, P. S. C., Jessup, R. E., and Davidson, J. M., “Ion exchange and diffusive mass transfer during miscible displacement through an aggregate oxisol”, Soil Sci. Soc. Am. J., 46, 471-476, 1982.
Park, E., and Zhan, H. B., “One-dimensional solute transport in a permeable reactive barrier-aquifer system”, Water Resources Research, 45, W07502, 2009.
Perez Guerrero, J. S., Skaggs, T. H., and van Genuchten, M. Th., “Analytical solution for multi-species contaminant transport in finite media with time-varying boundary condition”, Transport in Porous Media, 85, 171–178, 2010.
Perez Guerrero, J. S., Pontedeiro, E.M., van Genuchten, M. Th., and Skaggs, T. H., “Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions”, Chemical Engineering Journal, 221, 487–491,2013a.
Perez Guerrero, J. S., Pimentel, L. G. G., and Skaggs, T. H., “Analytical solution for the advection–dispersion transport equation in layered media”, International Journal of Heat and Mass Transfer, 56, 274–282, 2013b.
Rabideau, A. J., Suribhatla, R., and Craig, J. R., “Analytical models for the design of iron-based permeable reactive barriers”, Journal of Environmental Engineering, 131 (11), 1589–1597, 2005.
van Genuchten, M., and Wierenga, P. J., “Mass transfer studies in sorbing porous media, I, Analytical solution”, Soil Science Society of America Journal, 40, 473-479, 1971.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2018-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明