博碩士論文 105624010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.228.24.192
姓名 陳羽甄(Yu-Chen Chen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 台灣紅菜坪地滑區崩積層材料摩擦特性與受震運動特性分析
(Frictional and kinematical characteristics of the Hungtsaiping landslide, Taiwan)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 紅菜坪地滑區為1999年集集大地震誘發之山崩之一,其滑動範圍廣、滑動面深度深、地質構造複雜。前人曾採用多種方法探討其滑動機制及進行穩定性評估,然而,邊坡穩定性與材料強度參數、環境因素(地震、地下水等)高度相關,故本研究目的為利用低至中速(2.1×10-7 - 1.3×10-2 m/s)旋剪摩擦試驗瞭解滑移速度對其剪力強度之影響,將實驗結果結合紅菜坪地滑地周邊強震站之集集地震加速度資料,進行圓弧型滑動面之Newmark位移分析,瞭解受震後紅菜坪地滑地之運動特性,探討其滑移二、三十公尺山崩之原因。本研究試體為低塑性黏土,礦物組成中含有石英、長石及黏土礦物,黏土礦物中以伊萊石最多(41.3%)、膨潤石與混層膨脹性黏土礦物次之(36.9%)、少量高嶺石(11.3%)與綠泥石(10.5%)。旋剪摩擦試驗結果分為兩部分:(1)正常壓密、浸水條件之定速試驗穩態摩擦係數於滑移速度小於2.1×10-5 m/s時隨速度變化無明顯變化(μ=0.25-0.27),當滑移速度於4.0×10-4至2.1×10-4 m/s之間,摩擦係數快速下降(μ=0.11-0.13),滑移速度達1.3×10-3 m/s以上,摩擦係數更降至極低值(μ=0.02-0.03),分階定速試驗之穩態摩擦係數於速度變化時,亦無明顯變化,取平均值μ=0.20;(2)過壓密、自然含水量條件試驗之定速穩態摩擦係數於滑移速度2.1×10-5、1.2×10-3及1.3×10-2 m/s時,摩擦係數分別為0.27、0.05及0.08,分階定速試驗結果於速度範圍2.1×10-7至2.1×10-4 m/s時是所有試驗結果中摩擦係數最高的(μ=0.36-0.41)。利用STABL 5M計算出臨界加速度與摩擦係數關係為Ac=0.63μ-0.23,以此式帶入圓弧型破壞面之Newmark位移分析中以進行紅菜坪地區之受震運動分析,分析分為兩部分:(1)若摩擦係數為定值(不隨滑移速度改變而變化)時,以TCU072測站加速度、略大於無地震、安全係數為1.0時之摩擦係數值(0.36)0.366(過壓密、自然含水條件下分階定速試驗結果之摩擦係數平均值)作為分析輸入值,分析結果顯示累積位移為24.51公尺,接近前人實測紅菜坪地區於集集地震期間地表平均水平位移24.7公尺,然而此分析結果中,塊體之最大滑移速度為0.91 m/s,達此滑移速度時不論是眾多前人研究及本研究實驗結果皆顯示摩擦係數會弱化至約0.1,進而發生快速、長距離滑動山崩事件;(2)若考量室濕條件、紅菜坪山崩材料礦物組成相似之Vajont山崩材料之速度相依摩擦律,與紅菜坪地區周圍四強震站資料進行Newmark位移分析,分析結果顯示其中三測站會發生快速、長距離滑動。根據以上兩點,推測紅菜坪坡趾處溝谷中之人工壩體為讓紅菜坪滑動塊體未發生快速、長距離滑動之重要原因。
摘要(英) The Hungtsaiping (HTP) landslide is a gigantic, deep-seated landslide that was triggered by 1999 Chi-Chi earthquake. In previous studies, researchers used several methods to understand the sliding mechanism and to evaluate the stability of this area. However, the most important factors of the soil slope stability analysis are strength parameters, environment conditions, and the selection of the profile to be analyzed. The objective of this study is to understand the velocity-dependent frictional characteristics through the low-to-medium shear rate (2.1×10-7 – 1.3×10-2 m/s) rotary shear tests and the kinematical characteristics during Chi-Chi earthquake by Newmark displacement analysis for circular sliding surface. Discussing the reason on the movement of 20-30 m landslide at HTP landslide area during Chi-Chi earthquake.
The rotary-shear experiment results can be divided into two part: (1) The single constant velocity rotary-shear experiments under normally-consolidated, immersed in water conditions show that frictional characteristics are velocity-neutral (friction coefficient not varied with shear velocity) at low slip rate (μ=0.25-0.27) when slip rate smaller than 2.1×10-5 m/s. When slip rate in the range 4.0×10-5 - 2.1×10-4 m/s, μ decrease rapidly (μ=0.11-0.13). When slip rate reach 1.2×10-3 m/s, μ even drop to very low value (μ=0.02-0.03). The velocity-stepping experiments indicate that when slip rate changed, the friction coefficients are velocity-independent, which with an average value of 0.20, which is comparable to the value of single constant shear velocity experiments under low slip rate. (2) The single constant velocity rotary-shear experiments under over-consolidated, natural water content conditions show that frictional coefficients are 0.27, 0.05 and 0.08 at slip rates are 2.1×10-5, 1.2×10-3 and 1.3×10-2 m/s, respectively. The friction coefficients of velocity-stepping experiment are largest in all of the shear experiments at velocity of 2.1×10-7 to 2.1×10-4 m/s (μ=0.36-0.41).
This study use STABL 5M to calculate the critical acceleration under different friction coefficient. The relation between critical acceleration and friction coefficient can express as Ac=0.63μ-0.23, which is used in Newmark displacement analysis. The analysis results have divided into two part: (1) If friction coefficient is 0.366 (the average μ of over-consolidated, natural water content velocity-stepping experiment), that slightly higher than the friction coefficient, 0.36 (the μ when F.S equal to 1.0 without earthquake occurrence), the Newmark displacement analysis yields a result that closest to the reality measured average horizontal displacement, 24.7 m. However, the maximum slip velocity calculated by Newmark displacement analysis during earthquake almost reach 1.0 m/s. At this velocity level, steady-state friction coefficient will weaken to about 0.1 in previous studies and this study. Once the friction coefficient weakens to 0.1, the HTP landslide won’t stop. (2) This study incorporated velocity-dependent friction law of Vajont landslide gouges (mineral composition similar with HTP landslide gouges) under room-humidity condition with Newmark displacement analysis. Three of four strong motion stations’ analysis results show that HTP area also have rapid, long distance landslide occurred. According to the aforementioned, we speculate that the resistance force contributed by the artificial structures at toe of HTP landslide area is the important reason to stop the rapid movement of HTP landslide.
關鍵字(中) ★ 集集地震
★ 紅菜坪地滑區
★ 旋剪摩擦試驗
★ Newmark位移分析
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
Contents vi
List of figures ix
List of tables xviii
List of notations xix
1 Introduction 1
1.1 Chi-Chi earthquake and Hungtsaiping landslide 1
1.2 Geological setting 5
1.3 Frictional characteristics 8
1.4 Newmark displacement analysis 10
1.5 Objectives 13
2 Methodology 14
2.1 Testing material 14
2.1.1 Laser particle size analysis 16
2.1.2 Atterberg limit test 16
2.1.3 X-ray diffraction analysis (XRD analysis) 17
2.2 Rotary shear test 18
2.2.1 Teflon friction calibration 22
2.2.2 Normally-consolidated, immersed in water condition 25
2.2.3 Over-consolidated, natural water content condition 27
2.3 Newmark displacement analysis for circular sliding surface 27
2.3.1 Slope stability analysis program, STABL 5M 28
2.3.2 Newmark displacement analysis for circular failure 28
3 Results 32
3.1 Particle size distribution, Atterberg limits test and mineral composition of the HTP landslide material 32
3.2 Teflon friction calibration 37
3.2.1 Intercept method (normal stress cycle tests) 38
3.2.2 No-load tests 40
3.3 Frictional characteristics 41
3.3.1 Single constant velocity experiments under normally-consolidated, immersed in water condition 41
3.3.2 Velocity-stepping experiments under normally-consolidated, immersed in water condition 46
3.3.3 Single constant velocity experiments under over-consolidated, natural water content condition 51
3.3.4 Velocity-stepping experiments under over-consolidated, natural water content condition 53
3.4 Slope stability 56
3.4.1 Friction coefficient and critical acceleration relation 58
3.5 Newmark displacement analysis 59
4 Discussion 62
4.1 Comparison of two kinds of Teflon friction calibration methods 62
4.2 Frictional characteristics and dominant mechanisms 64
4.3 The limitation of Newmark displacement analysis 65
4.3.1 The inferred analysis profile 65
4.3.2 The influence of vertical seismic acceleration on the slope stability 68
4.3.3 The groundwater condition of HTP landslide area 69
4.3.4 Incorporating velocity-depent friction law and circular sliding surface Newmark displacement analysis 71
4.3.5 The representation of strong motion station 78
5 Conclusions 80
6 Suggestions 82
References 83
Appendix 1 91
Appendix 2 92
Appendix 3 95
Appendix 4 100
Appendix 5 120
Appendix 6 135
Appendix 7 139
Appendix 8 144
參考文獻 [1] H. W. Liao, “Landslides triggered by Chi-Chi earthquake”, National Central University, Master thesis, 2000 (in Chinese).
[2] W. N. Wang, M. Chigira and T. Furuya, “Geological and geomorphological precursors of the Chiu-Feng-Erh-Shan landslide triggered by the Chi-chi earthquake in central Taiwan”, Engineering Geology, Vol 69, pp. 1–13, 2003.
[3] J. F. Lee, C. Y. Wei and C. C. Huang, “The study of Hungtsaiping landslide using digital photogrametric technique”, Proceeding of International Symposium on Landslide and Debris Flow Hazard Assessment, pp. 5-1–5-9, Taiwan, Oct. 2004.
[4] C. Y. Wei and J. F. Lee, “The application of digital aerial photography in the study of Hungtsaiping landslide, Chungliao, Nantou County.” Bulletin of the Central Geological Survey, Vol. 19, pp. 39–59, 2006 (in Chinese).
[5] C. H. Tseng,” Non-catastrophic landslides induced by the Mw 7.6 Chi-Chi earthquake in central Taiwan revealed by the PIV analysis”, National Taiwan University, Master thesis, 2006 (in Chinese).
[6] C. M. Lo, K. C. Lee, W. C. Lee, M. L. Lin and F. S. Jeng, “Landslide zonation of Hungtsaiping area based on aerial photograph and PIV technology”, Proceedings of 2nd Japan-Taiwan Joint Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfall, pp. 30-36, Nagaoka, Niigata, Japan, May 2006.
[7] J. J. Dong, W. R. Lee, M. L. Lin, A. B. Huang and Y. L. Lee, “Effects of seismic anisotropy and geological characteristics on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides during Chi-Chi earthquake”, Tectonophysics, Vol 466, pp. 438-457, 2009.
[8] C. M. Lo, “Earthquake-induced deep-seated landslide and landscape evolution process at Hungtsaiping, Nantou County, Taiwan”, Environmental Earth Sciences, Vol 75:645, 2016
[9] C.S. Huang, K.S. Hsieh and M.M. Chen, Explanatory text of the geologic map of Taiwan, 1:50000, Sheet 32, Puli. Central Geological Survey, Ministry of Economics Affaires, 2000.
[10] W. R. Lee, “Influence of geological factors on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides trigged by Chi-Chi earthquake”, National Central University, Master thesis, 2006 (in Chinese).
[11] Sinnotech Engineering Consultants, inc., 紅菜坪地區降雨-孔隙水壓-位移之關聯性分析, Taipei, Taiwan, 2008 (in Chinese).
[12] H. R. Ke, “Research on the colluvium properties and landslide behaviors in Hungtsaiping area”, National Taiwan University, Master thesis, 2006 (in Chinese).
[13] C. F. Chiu, “The influence of pore pressure model on stability of Hungtsaiping area”, National Central University, Master thesis, 2007 (in Chinese).
[14] C. W. Chang, “Distinct-element method applied to the landslide evolution of Hungtsaiping area”, National Taiwan University, Master thesis, 2007 (in Chinese).
[15] J. H. Dieterich, “Modelling of rock friction: 1. Experimental results and constitutive equations”, Journal of Geophysical Research, Vol 84, pp. 2161–2168, 1979.
[16] J. H. Dieterich, “Constitutive properties of faults with simulated gouge”, Mechanical Behavior of Crystal Rocks, pp. 103-120, 1981.
[17] A. L. Ruina, “Slip instability and state variable friction laws”, Journal of Geophysical Research, Vol 88, pp.10359-10370, 1983.
[18] J. R. Rice and A. L. Ruina, “Stability of steady frictional slipping”, Journal of Applied Mechanics, Vol 50, pp. 343-349, 1983.
[19] C. Marone, “Laboratory-derived friction laws and their application to seismic faulting”, Annual Review of Earth and Planetary Sciences, Vol 26, pp. 643-696, 1998.
[20] C. H. Scholz, “Earthquakes and friction laws.” Nature, Vol 391, pp. 37-42, 1998.
[21] N.M. Newmark, “Effects of earthquakes on dams and embankments” Geotechnique, Vol 15, pp.139-159, 1965.
[22] R. C. Wilson and D. K. Keefer, “Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake”, Bulletin of the Seismological Society of America, Vol 73, No. 3, pp. 863-877, 1983.
[23] W. F. Chen and X. L. Liu, “Limit analysis in soil mechanics”, Developments in Geotechnical Engineering. pp. 405-436, 1990.
[24] W. D. Johns, R. E. Grim and W. F. Bradly, “Quantitative estimation of clay minerals by diffraction methods”, Journal of Sedimentary Petrology, Vol 24, pp. 242-251, 1954.
[25] P. H. Hsu, “Mineralogy of potential reservoir and seal rocks for CO2 geologic storage in central Taiwan and its tectonic implications”, National Central University, Master thesis, 2013 (in Chinese).
[26] T. Shimamoto and A. Tsutsumi, “A new rotary-shear high-speed frictional testing machine: its basic design and scope of research”, Journal of Tectonic Research Group of Japan, Vol 39, pp. 65-78, 1994.
[27] T. Hirose and T. Shimamoto, “Slip-weakening distance of faults during frictional melting as inferred from experimental and natural pseudotachylytes”, Bulletin of the Seismological Society of America, Vol 95, No. 5, pp. 1666–1673, 2005b.
[28] C. M. Yang, W. L. Yu, J. J. Dong, C. Y. Kuo, T. Shimamoto, C. T. Lee, T. Togo and Y. Miyamoto, “Initiation, movement, and run-out of the giant Tsaoling landslide —What can we learn from a simple rigid block model and a velocity–displacement dependent friction law?”, Engineering Geology, Vol 182, pp. 158-181, 2014.
[29] T. Shimamoto and T. Togo, “Earthquakes in the lab”, Geophysics, Vol 338, No. 54, pp. 54-55, 2012.
[30] M. Sawai, T. Shimamoto and T. Togo, “Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes”, Journal of Structural Geology, Vol. 38, p.p. 117-138, 2012.
[31] K. Mizoguchi, T. Hirose, T. Shimamoto and E. Fukuyama, “Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake”, Geophysical Research Letters, Vol 34, L01308, doi:10.1029/2006GL027931, 2007.
[32] H. Kitajima, J. S. Chester, F. M. Chester and T. Shimamoto, “High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating,mechanical behavior, andmicrostructure evolution”, Journal of Geophysical Research, Vol 115, B08408, doi:10.1029/2009JB007038, 2010.
[33] Y. F. Wang, J. J. Dong and Q. G. Cheng, “Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility...”, Journal of Geophysical Research: Solid Earth, Vol 122, pp. 1648-1676, 2017.
[34] E. N. Bromhead, Stability of Slopes, Surrey University Press, London, 1992.
[35] T. E. Tika, P. R. Vaughan and L. J. L. Lemos, “Fast shearing of pre-existing shear zone in soil”, Geotechnique, Vol 42, No. 2, pp.197–233, 1996.
[36] A. J. Harris and P. D. J. Watson, “Optimal procedure for the ring shear test”, Ground Engineering, Vol 30, No. 6, pp. 26–28, 1997.
[37] M. Suzuki, K. Kobayashi, T. Yamamoto, T. Matsubara and J. Hukuda, “Influence of shear rate on residual strength of clay in ring shear test”, Yamaguchi University, Research Report, Vol 55, No. 2, pp. 49–62, 2004.
[38] B. Tiwari and H. Marui, “Objective oriented multistage ring shear test for shear strength of landslide soil”, Journal of Geotechnical and Geoenvironmental Engineering, Vol 130, No. 2, pp. 217–222, 2004.
[39] D. E. Moore and D. A. Lockner, “Friction of the smectite clay montmorillonite: A review and interpretation of data”, The Seismogenic Zone of Subduction Thrust Faults, pp. 317–345, Columbia Univ. Press, New York, 2007.
[40] M. J. Ikari, D. M. Saffer and C. Marone, “Frictional and hydrologic properties of clay-rich fault gouge”, Journal of Geophysical Research, Vol 114, B05409, doi:10.1029/2008JB006089, 2009.
[41] F. Ferri, G. Di Toro, T. Hirose, R. Han, H. Noda, T. Shimamoto, M. Quaresimin and N. de Rossi, “Low- to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy”, Journal of Geophysical Research, Vol 116, B09208, doi:10.1029/ 2011JB008338, 2011.
[42] F. Remitti, S. A. F. Smith, S. Mittempergher, A. F. Gualtieri and G. Di Toro, “Frictional properties of fault zone gouges from the J-FAST drilling project (Mw 9.0 2011 Tohoku-Oki earthquake)”, Geophysical Research Letters, Vol 42, pp. 2691–2699, doi:10.1002/ 2015GL063507, 2015.
[43] Y. C. Wan, “The displacement of rotational failure of the natural slopes under seismic condition”, National Cheng Kung University, Master thesis, 2003 (in Chinese).
[44] E. Achilleos, “User guide for PCSTABL5M”, Joint Highway Research Report No. Jhrp-88/19, Purdue Univ., West Lafaywtte, Ind, 1988.
[45] W. H. K. Lee, T. C. Shin, K. W. Kuo, K. C. Chen and C. F. Wu, CWB freefield strong-motion data from the 921 Chi-Chi earthquake, Vol 1. Digital Acceleration Files on CD-ROM, 1999.
[46] W. H. K. Lee, T. C. Shin, K. W. Kuo, K. C. Chen and C. F. Wu, “Data files from CWB free-field strong-motion data from the 921 Chi-Chi (Taiwan) earthquake”, Bulletin of the Seismological Society of America, Vol 91, pp. 1370–1376, 2001a.
[47] R. V. Siddharthan and M. EL-Gamal, “Permanent rotational deformation of dry cohesionless slopes under seismic excitations”, Transportation research record: Journal of the Transportation Research Board, Vol 1633, pp. 45-50, 1998.
[48] C. N. Lee, “草嶺崩塌地受震行為初探”, National Taiwan University, Master thesis, 2001 (in Chinese).
[49] W. F. Peng, “A preliminary study of planar natural slope failure by the cumulative displacement method”, National Cheng Kung University, Master thesis, 2001 (in Chinese).
[50] Y. H. Ho, “Characteristics and origins of secondary chloritic minerals in the Tertiary basaltic rocks from Taiwan”, National Sun Yat-Sen University, Master thesis, 2010 (in Chinese).
[51] C. H. Hsu, “Critical displacement of earthquake-triggered catastrophic landslides”, National Central University, Master thesis, 2016 (in Chinese).
[52] A. J. Hendron and F. D. Patton, “The Vaiont slide, a geotechnical analysis based on new geologic observations of the failure surface, Technical Report GL?85?5, U.S. Army Corps of Engineers, Washington, D. C, 1985.
[53] T. E. Tika and J. N. Hutchinson, “Ring shear tests on soil from the Vaiont landslide slip surface”, Geotechnique, Vol 49, pp. 59–74, doi:10.1680/ geot.1999.49.1.59, 1999.
[54] J. F. Lupini, A. E. Skinner and P. R. Vaughan, “The drained residual strength of cohesive soils”, Geotechnique, Vol 31, pp. 181–213, 1981.
[55] J. M. Logan and K. A. Rauenzahn, “Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition, and fabric”, Tectonophysics, Vol 144, pp. 87–108, 1987.
[56] K. M. Brown, A. Kopf, M. B. Underwood and J. L. Weinberger, “Compositional and fluid pressure controls on the state of stress on the Nankai subduction thrust: A weak plate boundary”, Earth and Planetary Science Letters, Vol 214, pp. 589–603, 2003.
[57] D. M. Saffer and C. Marone, “Comparison of smectite- and illite-rich gouge frictional properties: Application to the updip limit of the seismogenic zone along subduction megathrusts”, Earth and Planetary Science Letters, Vol 215, pp. 219–235, 2003.
[58] M. J. Ikari, D. M. Saffer and C. Marone, “Effect of hydration state on the frictional properties of montmorillonite?based fault gouge”, Journal of Geophysical Research, Vol 112, B06423, doi:10.1029/2006JB004748, 2007.
[59] J. Behnsen and D. R. Faulkner, “Permeability and frictional strength of cation-exchanged montmorillonite”, Journal of Geophysical Research: Solid Earth, Vol 118, pp. 2788–2798, doi:10.1002/jgrb.50226, 2013.
[60] Y. W. Lee, “Relationship of frictional characteristics of kaolin clay in different slip rates and drainage conditions”, National Central University, Master thesis, 2017 (in Chinese).
[61] T. F. Shi, 台灣堡圖導讀, Yuan-liou Publishing Co., Ltd, Taipei, Taiwan, 1997 (in Chinese).
[62] National Chiao Tung University, 紅菜坪地滑監測系統建立與變形機制研究(1/2)-期末報告, Central Geological Survey, Taipei, Taiwan, 2005 (in Chinese).
[63] C. T. Lee, C. T. Cheng, C. W. Liao and Y. B. Tsai, “Site classifications of Taiwan free-field strong-motion stations”, Bulletin of Seismological Society of America, Vol 91, pp. 1283-1297, 2001.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明