博碩士論文 105624013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.80.85.76
姓名 張峻暟(Chun-Kai Chang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 考慮尺度延散與限制速率吸附之多物種傳輸解析解模式
(Analytical model for multispecies scale-dependent dispersive transport subject to rate-limited sorption)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-8-31以後開放)
摘要(中) 多物種汙染傳輸模式為模擬降解污染物(含氯有機溶劑、殺蟲劑、核種放射性物質、肥料與農藥等)宿命傳輸過程的有效工具。為簡化數學推導的過程,前人的多物種模式大多假設瞬間平衡吸附與常係數延散。然而許多文獻指出尺度延散與限制速率吸附對於汙染物的傳輸有重大影響,尺度延散是指延散度會隨著溶質傳輸距離增加,而限制速率吸附則考慮了吸附項與溶解項在溶質質量上的交換速率。前人已發展出分別考慮限制速率吸附與尺度延散的多物種傳輸模式,但並沒有能整合兩者的多物種傳輸模式。因此本研究發展出同時考慮尺度延散與限制速率吸附之多物種污染物傳輸的解析解模式。求解過程使用廣義型積分轉換與Laplace轉換消除空間與時間的微分項,最後使用一系列逆轉換求得原值域的解析解。解析解的驗證是利用有限差分的數值方法求解相同的控制方程式,並把數值模式所得結果與本研究之解析解做對照,兩者結果相當吻合。最後新的模式將作為基準與前人模式做比較,以了解尺度延散與限制速率吸附之綜合效應對污染傳輸的影響,在比較本模式(SR)和傳統常係數延散與平衡吸附的模式(CI)後,結果顯示CI模式在模擬多物種汙染物傳輸時會高估或低估汙染物濃度的影響。
摘要(英) Multispecies transport models are effective tools for predicting the transport and fate of decaying or degradable contaminants such as dissolved chlorinated solvents, pesticides, radionuclides, and nitrogen chains in the subsurface environment. For simplification of solution, the existing multispecies transport analytical models are currently derived assuming instantaneous equilibrium sorption and constant dispersion. However, both experimental and theoretical research indicate that both rate-limited sorption and scale-dependent dispersion have profound effects on the movement of contaminants in the subsurface. Although models have been derived assuming instantaneous sorption or scale-dependent dispersion individually, both processes have not been integrated into the governing equations of a single analytical model. The goal of this study is to fill this gap and to develop a multispecies transport analytical model in which first-order reversible kinetic sorption reaction equation system is incorporated into two sets of simultaneous advection-dispersion equations with scale-

dependent dispersion coefficients coupled by sequential first-order decay reactions. The analytical solution to the complicated governing equation system are obtained by using the Laplace transform and the generalized integral transform technique. The correctness of the derived analytical model and of the corresponding computer code are proved by the excellent agreements between the computational results obtained from the derived model and those obtained with a numerical model where the same governing equations are solved using the advanced Laplace transform finite difference method. The new model is compared to a previous model to demonstrate the synergy of the rate-limited sorption and scale-dependent dispersion on multispecies transport. Comparison of the model developed in this study(labelled SR) and a constant dispersion model with instantaneous sorption(labbled CI), shows that solute concentration may be underestimated or overestimated in the CI model.
關鍵字(中) ★ 解析解
★ 多物種模式
★ 限制速率吸附
★ 尺度延散
關鍵字(英) ★ analytical solution
★ multisepcies model
★ rate-limited sorption
★ scale-dependent dispersion
論文目次 摘要 -------------------------------- -------------------------------- ----------------- i
ABSTRACT -------------------------------- -------------------------------- ------- ii
致謝 -------------------------------- -------------------------------- --------------- iv
TABLE OF CONTENTS -------------------------------- ------------------------ v
LIST OF FIGURES -------------------------------- ----------------------------- vi
LIST OF TABLES -------------------------------- ----------------------------- viii
Notation -------------------------------- -------------------------------- ------------ x
1 Introduction -------------------------------- -------------------------------- ----- 1
1.1 Motivation -------------------------------- -------------------------------- 1
1.2 Literature review -------------------------------- ------------------------- 3
1.3 Research objectives-------------------------------- ---------------------- 9
2 Methodology -------------------------------- -------------------------------- -- 10
2.1 Mathematical model -------------------------------- ------------------- 10
2.2 Solution derivation -------------------------------- -------------------- 15
3 Results and discussion -------------------------------- ----------------------- 22
3.1 Convergence behavior of the derived solution --------------------- 22
3.2. Verification tests -------------------------------- ---------------------- 38
3.3 Effect of rate-limited sorption and scale-dependent dispersion on solute transport -------------------------------- -------------------------- 42
3.4 Comparison of different models -------------------------------- ----- 45
4. Conclusions -------------------------------- -------------------------------- --- 51
References -------------------------------- -------------------------------- ------- 53
參考文獻 Aziz, C.E., Newell, C.J., Gonzales, J.R., and Jewett, D.G., “BIOCHLOR Natural Attenuation Decision Support System User′s Manual Version 1.0.”, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 2000.

Bear, J., “Analysis of flow against dispersion in porous media—Comments ”, Journal of Hydrology, 40(3-4), 381-385, 1979.

Brusseau, M. L., Larsen, T., and Christensen, T.H., “Rate?limited sorption and nonequilibrium transport of organic chemicals in low organic carbon aquifer materials”, Water Resources Research, 27(6), 1137-1145, 1991.

Brusseau, M. L., P.S. C. Rao and Gillham, R. W., “Sorption nonideality during organic contaminant transport in porous media”, CRC Crit. Rev. Environ. Control, Vol. 19(1), pp. 33-99, 1989a.

Chen, C. S., “Analytical and approximate solutions to radial dispersion from an injection well to a geological unit with simultaneous diffusion into adjacent strata”, Water Resources Research, 21(8), 1069-1076, 1985.

Chen, J. S. et al., “A Laplace transform power series solution for solute transport in a convergent flow field with scale?dependent dispersion”, Water Resources Research, 39(8), 2003.

Chen, J. S. et al., “A novel method for analytically solving multi-species advective–dispersive transport equations sequentially coupled with first-order decay reactions”, Journal of hydrology, 420, 191-204, 2012.

Chen, J. S. et al., “An analytical model for simulating two-dimensional multispecies plume migration”, Hydrology and Earth System Sciences, 20(2), 733-753, 2016.

Chen, J. S. et al., “Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity”, Journal of hydrology, 362(1-2), 142-149, 2008a.

Chen, J. S., Chen, C. S., and Chen, C. Y., “Analysis of solute transport in a divergent flow tracer test with scale?dependent dispersion”, Hydrological processes, 21(18), 2526-2536, 2007.

Chen, J. S., Ni, C. F., and Liang, C. P., “Analytical power series solutions to the two?dimensional advection–dispersion equation with distance?dependent dispersivities”, Hydrological processes, 22(24), 4670-4678, 2008b.

Chiang, S. Y., “Analytical model for multispecies transport with scale-dependent dispersion”, National Central University, Master Thesis, 2017.

Cho, C. M., “Convective transport of ammonium with nitrification in soil”, Canadian Journal of Soil Science, 51(3), 339-350, 1971.

Clement, T. P., “Generalized solution to multispecies transport equations coupled with a first?order reaction network”, Water Resources Research, 37(1), 157-163, 2001.

de Hoog, F. R., Knight, J. H., and Stokes, A. N.,. “An improved method for numerical inversion of Laplace transforms”, SIAM Journal on Scientific and Statistical Computing, 3(3), 357-366, 1982.

Gao, G. et al., “A new mobile?immobile model for reactive solute transport with scale?dependent dispersion”, Water Resources Research, 46(8), 2010.

Gelhar, L. W., Welty, C., and Rehfeldt, K. R., “A critical review of data on field?scale dispersion in aquifers”, Water resources research, 28(7), 1955-1974, 1992.


Goltz, M. N., Oxley, M. E., “Analytical modeling of aquifer decontamination by pumping when transport is affected by rate?limited sorption”, Water Resources Research, 27(4), 547-556, 1991.

Goltz, M. N., and Roberts, P. V., “Simulations of physical nonequilibrium solute transport models: Application to a large-scale field experiment”, Journal of contaminant hydrology, 3(1), 37-63, 1988.

Guerrero, J. P., and Skaggs, T. H., “Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients”, Journal of Hydrology, 390(1-2), 57-65, 2010.

Guerrero, J. S. P., Skaggs, T. H., and Van genuchten, M. T., “Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media”, Transport in porous media, 80(2), 373-387, 2009.

Ho, Y. C., “Analytical model for multi species transport subject to rate-limited sorption”, Natinal Central University, Master Thesis, 2017.

Hunt, B., “ Contaminant source solutions with scale-dependent dispersivities. Journal of Hydrologic Engineering”, 3(4), 268-275, 1998.

Hunt, B., “Scale-dependent dispersion from a pit. Journal of Hydrologic Engineering”, 7(2), 168-174, 2002.

Huang, K., Van genuchten, M. T., and Zhang, R., “Exact solutions for one-dimensional transport with asymptotic scale-dependent dispersion”, Applied Mathematical Modelling, 20(4), 298-308, 1996.

Moridis, G. J., and Reddell, D. L., “The Laplace transform finite difference method for simulation of flow through porous media”, Water Resources Research, 27(8), 1873-1884, 1991.

Nkedi-Kizza, P. et al., “Ion Exchange and Diffusive Mass Transfer During Miscible Displacement Through an Aggregated Oxisol 1. Soil Science Society of America Journal”, 46(3), 471-476, 1982.

Pang, L., and Hunt, B. “Solutions and verification of a scale-dependent dispersion model. Journal of Contaminant Hydrology”, 53(1-2), 21-39, 2001.

Pickens, J. F., and Grisak, G. E., “Modeling of scale?dependent dispersion in hydrogeologic systems”, Water Resources Research, 17(6), 1701-1711, 1981b.

Pickens, J. F., and Grisak, G. E., “Scale?dependent dispersion in a stratified granular aquifer. Water Resources Research”, 17(4), 1191-1211, 1981a.

Suk, H., “Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients”, Advances in water resources, 94, 412-423, 2016.

Sun, Y. et al., “Development of analytical solutions for multispecies transport with serial and parallel reactions”, Water Resources Research, 35(1), 185-190, 1999b.

Sun, Y.; Petersen, J., and Clement, T., “Analytical solutions for multiple species reactive transport in multiple dimensions”, Journal of Contaminant Hydrology, 35(4), 429-440, 1999a.

Valocchi, A. J., “Effect of radial flow on deviations from local equilibrium during sorbing solute transport through homogeneous soils”, Water Resources Research, 22(12), 1693-1701, 1986.

Van Genuchten, M. T., “Convective-dispersive transport of solutes involved in sequential first-order decay reactions”, Computers & Geosciences, 11(2), 129-147, 1985.

Van Genuchten, M. T., and Alves, W. J.,“Analytical solutions of the one-dimensional convective-dispersive solute transport equation (No. 157268)”, United States Department of Agriculture, Economic Research Service, 1982.

Van Genuchten, M. T., and Wierenga, P., “Mass transfer studies in sorbing porous media I. Analytical solutions 1”, Soil Science Society of America Journal, 40(4), 473-480, 1976.

Yates, S. R., “An analytical solution for one?dimensional transport in heterogeneous porous media”, Water Resources Research, 26(10), 2331-2338, 1990.

Yates, S. R., “An analytical solution for one?dimensional transport in porous media with an exponential dispersion function”, Water Resources Research, 28(8), 2149-2154, 1992.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明