博碩士論文 105624016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.80.218.53
姓名 張正弘(Cheng-Hung Chang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 考慮不同鏈衰變反應途徑的多物種傳輸解析解模式
(Multispecies transport analytical model with different chain decay reaction pathways)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-8-31以後開放)
摘要(中) 多物種傳輸解析解模式對於了解地下環境中污染物之傳輸行為是一種有效工具。前人所提出的多物種傳輸解析解模式多使用直鏈衰變的假設,此反應途徑的假設不符合污染物實際的衰變情況。然而從過去文獻可以發現,不同鏈衰變反應途徑對於溶質傳輸有很大的影響。本研究目的為發展考慮不同鏈衰變反應途徑的多物種傳輸解析解模式。研究中利用Laplace轉換與廣義型積分轉換以及一系列逆轉換來求得耦合移流-延散方程式的解,並撰寫成FORTRAN程式執行解析解模式的計算。所得解析解再利用數值解之Laplace有限差分法來進行相互驗證,結果顯示非常吻合,證明解析解的正確性與FORTRAN計算程式的準確性。最後將發展的解析解模式應用在實際污染物238U衰變與TCE降解的反應途徑上。
摘要(英) Multispecies transport analytical model is a cost-effective tool for better understanding the transport behavior in the subsurface environment. Analytical solutions for coupled multispecies solute transport problems are difficult to derive and relatively few. Although several multispecies transport analytical model have already been reported in the literature, those currently available have the primarily been derived based on advection-dispersion equations with straight chain decay reaction pathways. This study presents some new analytical model for multispecies transport with different chain decay reaction pathways. The closed-form analytical solutions to a set of coupled advection-dispersion equations are obtained by using the Laplace and generalized integral transform. Solutions for different chain decay reaction pathways are generated and are verified against numerical model that solved the same governing equation systems using the Laplace transform finite difference technique.
關鍵字(中) ★ 多物種
★ 解析解
★ 鏈衰變
★ 模式
關鍵字(英) ★ multispecies
★ analytical
★ chain decay
★ model
論文目次 摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vii
符號說明 ix
一、緒論 1
1-1研究動機 1
1-2文獻回顧 4
1-3研究目的 7
1-4論文架構 8
二、數學模式的建立與推導 10
2-1基本假設與模式建立 10
2-2控制方程式與初始、邊界條件 15
2-3解析解的推導 17
三、結果與討論 25
3-1不同鏈衰變反應途徑問題探討 25
3-2解析解模式數值收斂性測試 35
3-3解析解模式比較驗證 55
四、結論與建議 63
參考文獻 65
參考文獻 Bauer, P., Attinger, S., and Kinzelbach, W., “Transport of a decay chain in homogenous porous media: analytical solutions”, Journal of Contaminant Hydrology, 49, 217-239, 2001.
Batu, V., “A generalized three-dimensional analytical solute transport model for multiple rectangular first-type sources”, Journal of Hydrology, 174 (1-2), 57-82, 1996.
Bear, J., “Analysis of flow against dispersion in porous media - Comments”, Journal of Hydrology, 40 (3-4), 381-385, 1979.
Chen, C.S., “Analytical and approximate solutions to radial dispersion from an injection well to a geological unit with simultaneous diffusion into adjacent strata”, Water Resources Research, 21 (8), 1069-1076, 1985.
Chen, J. S., Ni, C. F., Liang, C. P., and Chiang C. C., “Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity”, Journal of Hydrological, 362, 142-149, 2008a.
Chen, J. S., Ni, C. F., and Liang, C. P., “Analytical power series solutions to the two dimensional advection–dispersion equation with distance-dependent dispersivities”, Hydrological Processes, 22 (24), 4670-4678, 2008b.
Chen, J. S., Chen, J. T., Liu, C.W., Liang, C.P., and Lin, C. W., “Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first-and third-type inlet boundary conditions”, Journal of Hydrological, 405, 522-531, 2011.
Chen, J. S., Lai, K. H., Liu, C. W., and Ni, C. F., “A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions”, Journal of Hydrology, 420-421, 191-204, 2012a.
Chen, J. S., Liu, C. W., Liang C. P., and Lai, K. H., “Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition”, Journal of Hydrology, 456-457, 101-109, 2012b.
Chen, J. S., Liang, C. P., Liu, C. W., and Li, L. Y., “An analytical model for simulating two-dimensional multispecies plume migration”, Hydrology and Earth System Sciences, 20, 733-753, 2016.
Cho, C. M., “Convective transport of ammonium with nitrification in soil”, Canadian Journal of Soil Science, 51, 339-350, 1971.
Clement, T. P., “Generalized solution to multispecies transport equations coupled with a first-order reaction network”, Water Resources Research, 37, 157-163, 2001.
Cotta, R. M., “Integral transforms in computational heat and fluid flow”, CRC Press, Boca Raton, FL, 1993.
Domenico, P. A., “An analytical model for multidimensional transport of a decaying contaminant species”, Journal of Hydrology, 91, 49-58, 1987.
Gao, G., Zhan, H., Feng, S., Fu, B., Ma, Y., and Huang G., “A new mobile-immobile model for reactive solute transport with scale-dependent dispersion”, Water Resources Research, 46, W08533, doi:10. 1029/2009WR008707, 2010.
Hunt, B., “Dispersive sources in uniform ground-water flow”, Journal of the Hydraulics Division, 104 (1), 75-85, 1978.
Hwang, H. T., Jeen, S. W., Sudicky, E. A., and Illman, W. A., “Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model”, Journal of Contaminant Hydrology, 177-178, 43-53, 2015.
Lunn, M., Lunn, R. J., and Mackay, R., “Determining analytic solutions of multiple species contaminant transport with sorption and decay”, Journal of Hydrology, 180 (1-4), 195-210, 1996.
Perez Guerrero, J. S., Skaggs, T. H., and van Genuchten, M. Th., “Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media”, Transport in Porous Media, 80, 373-387, 2009.
Perez Guerrero, J. S. and Skaggs, T. H., “Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients”, Journal of Hydrology, 390, 57-65, 2010.
Perez Guerrero, J. S., Skaggs, T. H., and van Genuchten, M. Th., “Analytical solution for multi-species contaminant transport in finite media with time-varying boundary conditions”, Transport in Porous Media, 85 (1), 171-188, 2010.
Srinivasan, V., and Clement, T. P., “Analytical solutions for sequentially coupled one-dimensional reactive transport problems - Part I: mathematical derivations”, Advances in Water Resources, 31, 203-218, 2008.
Srinivasan, V., and Clement, T. P., “Analytical solutions for sequentially coupled one-dimensional reactive transport problems - Part II: special cases, implementation and testing”, Advances in Water Resources, 31, 219-232, 2008.
Sudicky, E. A., Hwang, H. T., Illman, W. A., Wu, Y. S., Kool, J. B., and Huyakorn, P., “A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions”, Journal of Contaminant Hydrology, 144, 20-45, 2013.
Sun, Y., and Clement, T. P., “A decomposition method for solving coupled multi-species reactive transport problems”, Transport in Porous Media, 37, 327-346, 1999.

Sun, Y., Petersen, J. N., and Clement, T. P., “Analytical solutions for multiple species reactive transport in multiple dimensions”, Journal of Contaminant Hydrology, 35, 429-440, 1999a.
Sun, Y., Petersen, J. N., Clement, T. P., and Skeen, R. S., “Development of analytical solutions for multi-species transport with serial and parallel reactions”, Water Resources Research, 35, 185-190, 1999b.
Sun, Y., and Glascoe, L., “Modeling biodegradation and reactive transport: Analytical and numerical models”, ACS Symposium Series 940, 153-174, 2005.
van Genuchten, M. Th., and Alves, W. J., “Analytical solutions of the one-dimensional convective-dispersive solute transport equation”, US Department of Agriculture Technical Bulletin, No. 1661, 151, 1982.
van Genuchten, M. Th., “Convective–dispersive transport of solutes involved in sequential first-order decay reactions”, Computers & Geosciences, 11, 129-147, 1985.
Wilson, J. L., and Miller, P. J., “Two-dimensional plume in uniform groundwater flow”, Journal of the Hydraulics Division, 104, 503-514, 1978.
Yates, M.V., and Yates, S.R., “Modeling microbial fate in the subsurface environment”, CRC Critical Reviews in Environmental Control, 17, 307-344, 1988.
Yuan, D., and Kernan, W., “Explicit solutions for exit-only radioactive decay chains”, Journal of Applied Physics 101, 094097, 2007.
Zhan, H., Zhang, W., and Gao, G., “An analytical solution of two-dimensional reactive solute transport in an aquifer-aquitard system”, Water Resources Research, 45, W10501, doi:10.1029/2008WR007479, 2009.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明