博碩士論文 105624604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.133.137.34
姓名 阮氏香(Thi-Huong Nguyen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 南中國海東北部大陸斜坡及台灣海域增積岩體之塊體搬運堆積 及沉積物波的特徵研究
(Characterization of mass transport deposits and sediment waves in the NE South China Sea continental margin and the submarine Taiwan accretionary wedge)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣西南海域的構造特徵為台灣增積造山帶跨騎於南中國海張裂大陸邊緣東北部區域。在本研究裡,為解析在不同地體構造環境下,塊體搬運堆積(MTDs)和沉積物波(SWs)的來源,進行南海大陸斜坡及相鄰的台灣海域增積岩體之 MTDs 與SWs 的時空分布研究。本研究使用多音束水深、多頻道反射震測、井下資料來描述MTDs 和 SWs 的特徵。在張裂大陸邊緣,台南盆地主要由新近紀和第四紀沉積物組成,特別在深水的區域,上覆於古近紀同張裂沉積物。在張裂期間,許多正斷層陷落造成半地塹和地壘塊體構造,凹陷處充填了古近紀沉積物。深水區域的中新
世沉積物的特徵主要為半遠洋沉積物偶夾濁流岩。上新世時期有典型的斜坡沉積物向前加積的形貌及海底水道特徵。在更新世早期的格拉斯期(Gelasian Age)所形成的 MTDs、更新世 1.8 百萬年後的 MTDs 和沉積物波分別由 1.8 百萬年及 0.76百萬年等兩地層面區隔。有 4 個大尺度的更新世 MTDs (MTDa-MTDd)形成於格拉斯期;1.8 百萬年至 0.76 百萬年則發育 8 套 MTDs (MTD1-MTD8)。其中 MTD5 為最大的 MTD,範圍為 4,045 平方公里,體積約 208 立方公里。這些 MTDs 觸發的原因可能為相鄰陸棚邊緣的高沉降速率、全球海水面降低、大陸斜坡變陡、源自於初始弧陸碰撞帶的地震。從大約 0.76 百萬年後,大型 MTDs 不再發育,被廣布的 SWs 取代。現代的 SWs 僅形成於變形前緣以西,並且在兩個區域顯示不同的方向性和幾何形狀特徵。北部區域位於福爾摩沙峽谷以北和以東的區域,南部區域則位於福爾摩沙峽
谷以南。在增積岩體中,MTDs 僅出現於少數的斜坡盆地。尤其靠近分歧斷層(splay fault)。在墾丁盆地,MTD 的累積厚度達約 500 公尺厚。MTDs 在南海大陸邊緣的空間分布範圍與體積大小,遠大於增積岩體區域。這表示大陸邊緣較易發育大尺度和廣布的塊體運動,而增積岩體區域塊體運動則較為局部。增積岩體區域及相鄰的主要斷層(亦即分歧斷層)有最厚的 MTDs 發育,顯示增積岩體區更容易因地震觸發塊體運動,儘管只是區域性的沉積物崩落,仍可導致巨厚的沉積物堆
摘要(英) The Taiwan orogenic wedge overrides the northeast rifted continental margin of the South China Sea (SCS) in the offshore area of southwest Taiwan. In this work, I study the temporal and spatial distribution of Quaternary mass transport deposits (MTDs) and sediment waves (SWs) both in the SCS continental slope and its adjacent submarine Taiwan orogenic wedge in order to decipher the origins of MTDs and SWs in both tectonic regimes. Multibeam bathymetry, boreholes and multichannel reflection seismic data were used to characterize the MTDs and SWs. In the rifted continental margin, the Tainan Basin is mainly composed of Neogene and Quaternary sediments underlain by Paleogene synrift infills, especially in the deepwater area. During the rifting phase, many normal faults formed half-graben and graben blocks which were filled in by Paleogene sediments. Miocene sediments are characterized by hemiplegites with packets of turbidites in the deepwater areas. The slope progradational configuration is typical for Pliocene units with submarine channels which became well developed. During the Pleistocene Epoch, Gelasian MTDs, post 1.8 Ma MTDs, and sediment waves, which are separated by stratigrahic horizons of 1.8 Ma and 0.76 Ma, respectively. There are 4 large complexes of MTDs occurred during the Gelasian and 8 MTD sheets are recognized post 1.8 Ma boundary in the lower slope. MTD5 is the largest MTD which covers 4,045 km2, reaching a total volume of ~ 208 km3. Triggers of those MTDs are probably due to high sedimentation rates in the vicinity of the shelf edge, lowering of global sea-level, steepening of the continental slope, and earthquake shaking originated in the incipient arccontinent collision zone. The MTDs were then overlain by widespread SWs since around 0.76 Ma. The modern SWs occur only to the west of the deformation front and are characterized by two fields showing different orientation and geometry. The northern field lies to the north and to the east of the Formosa Canyon, while the southern field lies to the


ii

south of the Formosa Canyon. Though MTDs occur only in a limited number of slope basins in the accretionary wedge, they seem to occur near the splay fault, with a cumulated thickness up to ~ 500 m. The spatial extent of MTDs in the SCS continental margin is larger than that in the accretionary wedge. This indicates that large-scale and widespread mass movements tend to occur in continental margins, while the mass movements in the accretionary wedge tend to be more localized. The thickest MTDs are found in the accretionary wedge and adjacent to a major fault (i.e., the splay fault), indicating that the mass movements occurring in the accretionary wedge are most likely triggered by earthquake shaking, leading to gigantic thick, albeit localized sediment failures.
關鍵字(中) ★ 塊體搬運堆積
★ 沉積物波
關鍵字(英) ★ Mass-transport deposited
★ Sediment waves
★ Offshore Southwest Taiwan
★ Rifted continental margin
★ Taiwan accretionary wedge
論文目次 Abstract .................................................................................................................................. i
Acknowledgments ................................................................................................................ v
Contents ............................................................................................................................... vi
List of Figures ...................................................................................................................... ix
List of Tables ...................................................................................................................... xii
Chapter 1: Introduction ......................................................................................................... 1
1.1 Preface and Motivation .......................................................................................... 1
1.2 Terminology........................................................................................................... 3
1.3 Classification of MTDs .......................................................................................... 7
Chapter 2: Geological Settings and Methodology ............................................................. 12
2.1 Geological setting ................................................................................................ 12
2.1.1 Northern SCS rifted continental margin structures .................................. 12
2.1.2 Accretionary wedge structures ................................................................. 14
2.1.3 SCS continental margin morphology and its implication on the sedimentary process ................................................................................................... 15
2.1.4 Tectonic evolution.................................................................................... 16
2.2 Methodology ........................................................................................................ 16
Chapter 3: Results ............................................................................................................... 19
3.1 Seismic facies ...................................................................................................... 19
3.2 Rifted continental margin .................................................................................... 24
3.2.1 Stratigraphic correlation ........................................................................... 24
3.2.2 Internal architectures of MTDs ................................................................ 30
3.2.3 MTDs distribution in the continental margin .......................................... 34
3.2.3.1 Oligocene to Pliocene sediments ................................................. 34
3.2.3.1.1 Oligocene and Miocene sediments ................................... 34
3.2.3.1.2 Pliocene sediments ........................................................... 37
3.2.3.2 MTDs distribution in Quaternary ................................................. 37
3.2.3.2.1 MTDs beneath the 1.8 Ma surface (Gelasian MTDs) ...... 37
3.2.3.2.2 MTDs above the 1.8 Ma surface ...................................... 41
3.2.3.2.3 Pleistocene sediment wave (SW) fields ........................... 45
3.3 Taiwan accretionary wedge ................................................................................. 50
Chapter 4: Discussion ......................................................................................................... 54
4.1 Age of MTDs beneath 1.8 Ma boundary ............................................................. 54
4.2 Origins of MTDs in the rifted continental margin ............................................... 54
4.3 Classification of MTDs ........................................................................................ 62

Chapter 5: Conclusions ....................................................................................................... 63
References .......................................................................................................................... 65
參考文獻 Alves, T.M. (2015). Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review. Marine Petroleum Geology 67, 262-285.
Bull, S., Cartwright, J., Huuse, M. (2009). A review of kinematic indicators from masstransport complexes using 3D seismic data. Marine Petroleum Geology 26, 1132-1151.
Chen, A.T., Jaw, Y.S. (1997). Velocity structure near the northern Manila Trench: An OBS reflection study. Terrestrial, Atmospheric and Oceanic Sciences 7, 277–297.
Chiu, J.-K., Liu, C.-S. (2008). Comparison of sedimentary processes on adjacent passive and active continental margins offshore of SW Taiwan based on echo character studies. Basin Research 20, 503-518.
Davis, D., Suppe, J., Dahlen, F. A. (1983). Mechanisms of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research 88, 1153–1172.
Ding, W.W., Li, J.B., Li, M.B., Qiu, X.L., Fang, Y.X., Tang, Y. (2008). A Cenozoic tectono-sedimentary model of the Tainan Basin, the South China Sea: Evidence from a multi-channel seismic profile. Journal of Zhejiang University Science A, 9, 702713.
Ding, W.W., Sun, Z., Dadd, K., Fang, Y. X., Li, J. B. (2018). Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accreationary process. Earth and Planetary Science Letters 488, 115-125.
Gong, C.L., Wang, Y.M., Xu, S., Pickering, K.T., Peng, X.C., Li, W.G., Yan, Q. (2015). The northeastern South China Sea margin created by the combined action of down
slope and along-slope processes: Processes, products and implications for exploration and paleoceanography. Marine and Petroleum Geology 64, 233-249.
Fryer, G.J., Watts, P., Pratson, L.F. (2004). Source of the great tsunami of 1 April 1946: A landslide in the upper Aleutian forearc. Marine Geology 203, 201 – 218.
Haq, B.U. (1995). Growth and decay of gas hydrates: A forcing mechanism for abrupt climate change and sediment wasting on ocean margins. Akademie Wetenschap 44, 191–203.
Hsu, S.K., Yeh, Y.C., Doo, W.B., Tsai, C.H. (2004). New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches 25, 29-44.
Huang, C,Y., et al. (2001). Structural evolution from Paleogene extension to Latest Miocene – Recent arc-continent collision offshore Taiwan: Comparison with onland geology. Journal of Asian Earth Sciences 19, 619-639.
Kuang, Z.G., Zhong, G.F., Wang, L.L., Guo, Y.Q. (2014). Channel-related sediment waves on the eastern slope offshore Dongsha Islands, northern South China Sea. Journal of Asian Earth Sciences 79, 540-551.
Larsen, H.C., Mohn, G., Zhong. L. et al. (2018). Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience 11, 782-789.
Lee, T.Y., Tang, C.H., Ting, J.S., Hsu, Y.Y. (1993). Sequence stratigraphy of the Tainan Basin, offshore southwestern Taiwan. Petroleum Geology of Taiwan 28, 119–158.
Letouzey, J. and Sage, L. (1998). Geology and structural map of Eastern Asia. AAPG, Tulsa, Okla: American Association of Petroleum Geologists.

Li, C.F., Zhou, Z., Ge, H., Mao, Y. (2007). Correlations between erosions and relative uplifts from the central inversion zone of the Xihu Depression, East China Sea Basin. Terrestrial, Atmospheric and Oceanic Sciences, 18, 757–776.
Li, M.B., Jin, X.L., Li, J.B., Ding, W.W., Fang, Y.X., Liu, J.H., Tang, Y. (2011). Seismic sequence and depositional evolution of slope basin in mid-northern margin of the South China Sea. Chinese Journal of Oceanology and Limnology 29(5), 1113-1127.
Li, Q., Jian, Z., Su, X. (2005). Late Oligocene rapid transformations in the South China Sea. Marine Micropaleontology 54, 5–25.
Lin, A.T., Liu, C.S., Lin, C.C., Schnurle, P., Chen, G.Y., Liao, W.Z., Teng, L.S., Chuang, H.J., Wu, M.S. (2008). Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology 255, 186-203.
Lin, A.T., Watts, A.B., Hesselbo, S.P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research 15, 453–478.Lin, A.T., Yao, B., Hsu, S H., Liu, C.S., Huang, C.Y. (2009). Tectonic features of the incipient are-continent collision zone of Taiwan: Implications for seismicity, Tectonophysics 497, 28-42.
Lin, C.C., Lin, A.T., Liu, C.S., Horng, C.S., Chen, G.Y., Wang, Y.S. (2013). Canyoninfilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Researches, doi: 10.11001-0139203-7.
Liu, C.S., Huang, I.L., Teng, L.S. (1997). Structural features off southwestern Taiwan. Marine Geology, 305 – 319.
Ludmann, T., Wong, H.K., Wang, P.X. (2001). Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology 172, 331 – 358.
Martinez, J.F, Cartwright, J., Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research 17, 83– 108.
Martinsen, O.J. (1994). Mass movements. The Geological Deformation of Sediments: London, Chapman & Hall, p.127–165.
Maslin, M., Owen, M., Long, D. (2004). Linking continental-slope failures and climate change.Testing the clathrate gun hypothesis. Geology 32, 53–56.
Meckel, L. D. (2010). Sand-prone submarine mass transport deposit: reservoir characteristics and classification of an underappreciated deep-water facies. Houston Geological Society Bulletin 52, 17-23.
Moscardelli, L., Wood, L., Mann, P. (2006). Mass transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin 90, 1059 – 1088.
Moscardelli, L., Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research 20, 73 – 98.
Mosher, D.C. (2004). Near surface geology and sediment-failure geohazards of the central Scotian Slope. American Association of Petroleum Geologists 88, 703 – 723.
Mulder, T., Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269 – 299.
Posamentier, H.W., Walker, R.G. (2006). Deep-water turbidites and submarine fans. Facies Models Revisited: SEPM, Special Publication 84, 397–520.
Posamentier, H.W., Martinsen, O.L. (2010). The character and genesis of submarine mass transport deposits: Insights from outcrop and 3D seismic data. Mass Transport Deposits in Deep-water Settings, pp. 7-38.
Posamentier, H.W., Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journey of Sedimentary Research 73, 367 – 388.
Reed, D., Lundberg, N., Liu, C.S., Kuo, B.Y. (1992). Structural relations along the margins of the offshore Taiwan accretionary wedge: Implications for accretion and crustal kinematics. Acta Geologica Taiwanica 30,105 – 122.
Shipp, R.C., Nott, J.A., Newlin, J.A. (2004). Physical characteristics and impact of mass transport complexes on deep-water jetted conductors and suction anchor piles. Annual Offshore Technology Conference, Houston, Texas, OTC Paper 16751, 11.
Taylor, B., Hayer, D,E. (1983). Origin and history of the South China Basin. In: The Tectonic and Geologic Evolution of South-east Asia Seas and Islands (Part II). American Geophysical Union Monograph 27, 23 – 56.
Wu, S.G., Qin, Z.L., Wang, D.W., Peng, X.C., Wang, Z.J., Yao, G.S. (2011). Analysis on seismic characteristics and triggering mechanisms of mass transport deposits on the northern slope of the South China Sea. Chinese Journal of Geophysics 54, 1056 – 1068.
Xia, K.Y., Huang, C.L., Jiang, S.R., Zhang, Y.X., Su, D.Q., Xia, S.G., Chen, Z.R. (1994). Comparison of the tectonics and geophysics of the major structural belts between the northern and southern continental margins of the South China Sea. Tectonophysics 235, 99-116.
Xu, S., Wang, Y.M., Peng, X.C., Zou, H.Y., Qiu, Y., Gong, C.L., Zhou, H.T. (2014). Origin of Taiwan canyon and its effects on the deep-water sediment. Science China Earth Sciences 57, 2769–2780.
Yang, J., Davies, R. J., Huuse, M. (2013). Gas migration below gas hydrates controlled by mass transport complexes, offshore Mauritania. Marine Petroleum Geology 48, 366378.
Yin, S.R., Wang, L.L., Guo, Y.Q., Zhong, G.F. (2015). Morphology, sedimentary characteristics, and origin of the Dongsha submarine canyon in the northeastern continental slope of the South China Sea. Science China Earth Sciences 58, 971-985.
Yu, H.S., Hong, E. (2006). Shifting submarine canyons and development of a foreland basin in SW Taiwan: Controls of foreland sedimentation and longitudinal sediment transport. Journal of Asian Earth Sciences 27, 922-932.
Zhong, G.F., Cartigny, M.J.B., Kuang, Z.G., Wang, L.L. (2015). Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea. Bulletin of the Geological Society of America 217, 804-824.
指導教授 倪春發 林殿順(Chuen-Fa Ni Andrew Tien-Shun Lin) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明