博碩士論文 105624607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.147.29.160
姓名 潘克頁(Pham Quoc Viet)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 不同排水條件下高嶺土的速度相依摩擦特性及溫度測量
(Velocity-dependent frictional properties of kaolinite clay under different drainage conditions with temperature measurement)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大量研究表明,地滑的滑移速度會顯著地影響滑移帶的強度。此外,根據有效應力原理,滑移帶中因滑移而產生的孔隙壓力被認為是抗剪強度的主導因素。然而,關於此過程有效記錄的研究仍然很少。本研究旨在探討滑移速度、排水條件和溫度對高嶺土強度的影響,利用低速-高速旋剪儀以1MPa之正向應力、〖10〗^(-7)~1m/s之滑移速度,對濕高嶺土進行旋剪試驗,並量測視摩擦係數。排水條件由不同的圍岩類型控制,包括徑向排水和單排水條件。在實驗期間通過熱電偶直接測量剪切面上的溫度。實驗結果顯示,濕高嶺土的視摩擦係數μ明顯低於乾燥高嶺土的視摩擦係數μ。對濕的試體而言,由於含水量差異,使用相對不具滲透性的圍岩(RD系列)所進行剪切的試體之穩態摩擦係數略高於使用具滲透性的圍岩(SD系列)進行剪切之試體的之穩態摩擦係數。RD系列之實驗結果顯示,視穩態摩擦係數相對滑移速度的關係為先強化在弱化,與乾燥試體之結果相似。視穩態摩擦係數在速度強化之後,又迅速降低,與測量得到的溫度變化具有良好的一致性。結果顯示,在不同排水條件下高領土強度與滑移速度具有複雜的相依律。
摘要(英) Numerous researches have suggested that the slip rate of landslides affected the strength of slip zone significantly. Moreover, according to effective stress principal, the pore pressure generating in slip zone due to slip is proposed as a dominating factor for the shear resistance. However, the studies about efficient record on this process is still scarce. This study aims to explore the influence of slip rates, drainage conditions and also temperature on the strength of kaolinite clay. A low to high velocity rotary shear apparatus was used to measure the apparent friction coefficient of wet kaolinite clay under a normal stress of 1 MPa and slip rate ranged from 10-7 to 1 m/s. The drainage conditions are controlled by different holder types including radial drainage and single drainage condition. The temperature on the shear plan is measured directly during the experiment by thermocouple. The experimental results show that the apparent friction coefficient μ of the wet kaolinite clay is significantly lower than that of the dry one. For the wet samples, the μss of clay sheared using relatively impermeable holders (RD series) is somewhat higher than that of the samples sandwiched by permeable holders (SD series) because of the water content difference. Except at 1 m/s, the friction of SD condition becomes higher than RD one, the reason could be the pore pressure generated by thermal pressurization was treated by the permeable holder in SD condition. The apparent steady state friction coefficient μss versus slip rate for the RD series shows a similar strengthening-weakening variation of the dry one. Right after the strengthening, it decreases rapidly, presenting a good consistency with the measured temperature rise. Additional for RD samples, from slip rate of 10-6 m/s, friction coefficient versus slip displacement curves drop and gain again in a short time period is observed in initial stage of test, this could be related to the pore pressure generation/dissipation. The results show the complexity of slip rate dependency strength of kaolinite clay under different drainage conditions.
關鍵字(中) ★ 旋剪試驗
★ 高嶺土
關鍵字(英) ★ Rotary shear test
★ kaolinite
論文目次 1. Introduction 1
2. Methodology 4
2.1. Testing Material 4
2.2. Low- to high-velocity rotary-shear friction apparatus. 6
2.3. Temperature measurement and the theoretical calculation 11
3. Results 14
3.1. The pre-shear consolidation 14
3.2. Teflon ring friction correction 17
3.3. Friction coefficient versus slip displacement 19
3.4. Friction coefficient versus slip rates. 24
3.5. Shear contraction and shear dilation 26
3.6. Temperature measurement and residual water content 27
4. Discussion 36
4.1. Possible mechanisms for the velocity-dependent strength of dry Kaolinite samples 36
4.2. Possible mechanisms for the velocity-dependent strength of wet Kaolinite samples 40
5. Conclusions 44
6. Suggestion 46
References 47
Appendix 1. 55
Appendix 2. 56
Appendix 3. 58
Appendix 4. 60
Appendix 5. 61
Appendix 6. 63
參考文獻 [1] Y. W. Lee, “Relationship of frictional characteristics of kaolin clay in different slip rates and drainage conditions.”, National Central University, Master thesis, 2000 (in Chinese).
[2] Y. F. Wang, J. J. Dong and Q. G. Cheng, “Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility?”, Geophysical Research: Solid Earth, Vol 122, pp. 1648–1676, 2017.
[3] E. E. Alonso and N. M. Pinyol, “Criteria for rapid sliding: A review of Vajont case.”, Engineering Geology, Vol 114, No. 3–4, pp. 198–210, 2010.
[4] E. E. Alonso, A. Zervos and N. M. Pinyol, “Thermo-poro-mechanical analysis of landslides: From creeping behavior to catastrophic failure.” Geotechnique, Vol 66, No. 3, pp. 202-219, 2016.
[5] N. M. Beeler, T. E. Tullis, and D. L. Goldsby, “Constitutive relationships and physical basis of fault strength due to flash heating.”, Journal of Geophysical Research, Vol 113, B01401, 2008.
[6] D. R. Bhat, N. P. Bhandari, and R. Yatabe, “Method of residual-state creep test to understand the creeping behaviour of landslide soils.”, Landslide Science and Practice, Vol 2, pp. 635-642, 2013.
[7] K. Benazzouz Brahim, Ali Zaoui and B. Belonoshko Anatoly, “Determination of the melting temperature of kaolinite by means of the Z-method.”, American Mineralogist, Vol 98, No. 10, pp. 1881–1885, 2013.
[8] N. Brantut, A. Schubnel, J. N. Rouzaud, F. Brunet and T. Shimamoto, “High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics.”, Journal of Geophysical Research, Vol 113, B10401, 2008.
[9] L. Buijze, A. R. Niemeijer, R. Han, T. Shimamoto, and C. J. Spiers, “Friction properties and deformation mechanisms of halite(‐mica) gouges from low to high sliding velocities.”, Earth and Planetary Science Letters, Vol 458, pp. 107–119, 2017.
[10] J. Chen, A. Niemeijer, L. Yao and S. Ma, “Water vaporization promotes coseismic fluid pressurization and buffers temperature rise.”, Geophysical Research Letters, Vol 44, pp. 2177-2185, 2017.
[11] N. De Paola, R. E. Holdsworth, C. Viti, C. Collettini and R. Bullock, “Can grain size sensitive flow lubricate faults during the initial stages of earthquake propagation?”, Earth and Planetary Science Letters, Vol 431, pp. 48-58, 2015.
[12] G. Di Toro, D. L. Goldsby and T. E. Tullis, “Friction falls toward zero in quartz rock as slip velocity approaches seismic rates.”, Nature, Vol 427, pp. 436–439, 2004.
[13] G. Di Toro, R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco and T. Shimamoto, “Fault lubrication during earthquakes.”, Nature, Vol 471, pp. 494-497, 2011.
[14] D. R. Faulkner, T. M. Mitchell, J. Behnsen, T. Hirose and T. Shimamoto, “Stuck in the mud? Earthquake nucleation and propagation 1646 through accretionary forearms.”, Geophysical Research Letters, Vol 38, L18303, 2011.
[15] F. Ferri, G. Di Toro, T. Hirose, R. Han, H. Noda, T. Shimamoto, M. Quaresimin and N. De Rossi, “Low-to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy.”, Journal of Geophysical Research, Vol 116, B09208, 2011.
[16] F. Ferri, G. Di Toro, T. Hirose and T. Shimamoto, “Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges.”, Terra Nova, Vol 22, No. 5, pp. 347-353, 2010.
[17] R. L. Frost, E. Horváth, E. Makó and J. Kristof, “Modification of low and high-defect kaolinite surfaces: implications for kaolinite mineral processing.”, Colloid and Interface Science, Vol 270, pp. 337–346, 2004.
[18] D. L. Goldsby and T. E. Tullis, “Low frictional strength of quartz rocks at subseismic slip rates.”, Geophysical Research Letters, Vol 29, No. 17, pp. 1844, 2002.
[19] L. Goren and E. Aharonov, “Long runout landslides: The role of frictional heating and hydraulic diffusivity.”, Geophysical Research Letters, Vol 34, L07301, 2007.
[20] R. Han, T. Shimamoto, T. Hirose, H. J. Ree and J. Ando, “Ultralow friction of carbonate faults caused by thermal decomposition.”, Science, Vol 316, pp. 878–881, 2007.
[21] A. J. Hendron and F. D. Patton, “The Vaiont slide - a geotechnical analysis based on new geologic observations of the failure surface.”, Engineering Geology, Vol 24, No. 1-4, Vol 475-491, 1987.
[22] T. Hirose and M. Bystricky, “Extreme dynamic weakening of faults during dehydration by coseismic shear heating.”, Geophysical Research Letters, Vol 34, L14311, 2007.
[23] T. Hirose and T. Shimamoto, “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting.”, Geophysical Research, Vol 110, B05202, 2005.
[24] Hiroyuki Noda and Toshihiko Shimamoto, “Thermal Pressurization and Slip-Weakening Distance of a Fault: An Example of the Hanaore Fault, Southwest Japan.”, Bulletin of the Seismological Society of America; Vol 95, No. 4, pp. 1224–1233, 2005.
[25] O. Hungr, S. Leroueil and L. Picarelli, “The Varnes classification of landslide types, an update.”, Landslides, Vol 11, pp. 167–194, 2014.
[26] M. J. Ikari, D. M. Saffer, and C. Marone, “Effect of hydration state on the frictional properties of montmorillonite-based fault gouge.”, Geophysical Research: Solid Earth, Vol 112, B06423, 2007.
[27] R. M. Iverson and M. Richard, “Regulation of landslide motion by dilatancy and pore pressure feedback.”, Geophysical Research, Vol 110, F02015, 2005.
[28] J. W. Kim, J. H. Ree, R. Han and T. Shimamoto, “Experimental evidence for the simultaneous formation of pseudotachylyte and mylonite in the brittle regime.”, Geology, Vol 38, pp. 1143-1146, 2010.
[29] A. H. Lachenbruch, “Frictional heating, fluid pressure, and the resistance to fault motion.”, Geophysical Research, Vol 85, pp. 6097–6122, 1980.
[30] C. W. Mase and L. Smith, “Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault.”, Geophysical Research: Solid Earth, Vol 92, pp. 6249–6272, 1987.
[31] J. McConnell and S. Fleet, “Electron Optical Study of the Thermal Decomposition of Kaolinite.”, Clay Minerals, Vol 8, No. 3, pp. 279-290, 1970.
[32] D. P. McKenzie and J. N. Brune, “Melting on fault planes during large earthquakes.”, Geophysical Journal of the Royal Astronomical Society, Vol 29, pp. 65–78, 1972.
[33] K. Mizoguchi, T. Hirose, T. Shimamoto and E. Fukuyama, “Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake.”, Geophysical Research Letters, Vol 34, L01308, 2007.
[34] K. Mizoguchi, T. Hirose, T. Shimamoto and E. Fukuyama, “Moisture-related weakening and strengthening of a fault activated at seismic slip rates.”, Geophysical Research Letters, Vol 33, L16319, 2006.
[35] D. E. Moore and D. A. Lockner, “Friction of the smectite clay montmorillonite: A review and interpretation of data.”, The seismogenic zone of subduction thrust faults, pp. 317-345, 2007.
[36] C. A. Morrow, B. Radney, and J. D. Byerlee, “Frictional strength and the effective pressure law of montmorillonite and illite clays.”, International Geophysics, Vol 51, pp. 69-88, 1992.
[37] A. Niemeijer, G. Di Toro, S. Nielsen and F. Di Felice, “Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity.”, Geophysical Research: Solid Earth, Vol 116, B07404, 2011.
[38] H. Noda and T. Shimamoto, “Thermal pressurization and slip-weakening distance of a fault: an example of the Hanaore fault, southwest Japan.”, Bulletin of the Seismological Society of America, Vol 95, No. 4, pp. 1224–1233, 2005.
[39] E. Nonveiller, “Vaiont slide: influence of frictional heat on slip velocity.”, Proceedings of the meeting on the Vaiont 1963, pp. 187 – 197, 1992.
[40] K. Oohashi, T. Hirose, M. Takahashi, and W. Tanikawa, “Dynamic weakening of smectite-bearing faults at intermediate velocities: implications for subduction zone earthquakes.”, Geophysical Research, Vol 120, pp. 1572-1586, 2015.
[41] D. N. Petley and R. J. Allison, “The mechanics of deep-seated landslides.”, Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, Vol 22, pp. 747-758, 1997.
[42] N. M. Pinyol, M. Alvarado, E. E. Alonso and F. Zabala, “Thermal effects in landslide mobility.”, Géotechnique, pp. 1-18, 2017.
[43] F. Remitti, S. A. F. Smith, S. Mittempergher, A. F. Gualtieri and G. Di Toro, “Frictional properties of fault zone gouges from the J‐FAST drilling project (Mw 9.0 2011 Tohoku‐Oki earthquake).”, Geophysical Research Letters, Vol 42, pp. 2691–2699, 2015.
[44] J. R. Rice, “Heating and weakening of faults during earthquake slip.”, Geophysical Research, Vol 111, B05311, 2006.
[45] M. Sawai, T. Hirose and J. Kameda, “Frictional properties of incoming pelagic sediments at the Japan Trench: Implications for large slip at a shallow plate boundary during the 2011 Tohoku earthquake.”, Earth Planets Space, Vol 66, No. 1, pp. 65, 2014.
[46] T. Shimamoto, “A new rotary‐shear high‐speed frictional testing machine: its basic design and scope of research.”, Jour. Tectonic Res. Group of Japan, Vol 39, pp. 65–78, 1994.
[47] R. H. Sibson, “Interactions between temperature and pore fluid pressure during an earthquake faulting and a mechanism for partial or total stress relief.”, Nature Physical Science, Vol 243, pp. 66–68, 1973.
[48] T. E. Tika and J. N. Hutchinson, “Ring shear tests on soil from the Vaiont landslide slip surface.”, Geotechnique, Vol 49, pp. 59-74, 1999.
[49] T. Togo, S. L. Ma and T. Hirose, “High-velocity friction of faults: A review and implication for landslide studies.”, The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, pp. 205-216, 2009.
[50] T. Togo and T. Shimamoto, “Energy partition for grain crushing in quartz gouge during subseismic to seismic fault motion: an experimental study.”, Structural Geology, Vol 38, pp. 139–155, 2012.
[51] A. Tsutsumi and T. Shimamoto, “High-velocity frictional properties of gabbro.”, Geophysical Research Letters, Vol 24, pp. 699–702, 1997.
[52] I. Vardoulakis, “Catastrophic landslides due to frictional heating of the failure plane.”, Mechanics of Cohesive‐frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, Vol 5, No. 6, pp. 443–467, 2000.
[53] D. J. Varnes, “Slope movement types and processes.”, Special report, Vol 176, pp. 11-33, 1978.
[54] E. Veveakis, I. Vardoulakis and G. Di Toro, “Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy.”, Geophysical Research: Earth Surface, Vol 112, F03026, 2007.
[55] B. Voight and C. Faust, “Frictional heat and strength loss in some rapid landslides”, Geotechnique, Vol 32, No. 1, pp. 43–54, 1982.
[56] J. I. Wada, K. Kanagawa, H. Kitajima, M. Takahashi, A. Inoue, T. Hirose, J. I. Ando and H. Noda, “Frictional strength of ground dolerite gouge at a wide range of slip rates.”, Geophysical Research: Solid Earth, Vol 121, pp. 2961-2979, 2016.
[57] F. Wang, Y. Zhang, Z. Huo, X. Peng, S. Wang and S. Yamasaki, “Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir, China.”, Landslides, Vol 5. No. 4, pp. 379-386, 2008.
[58] C. A. J. Wibberley and T. Shimamoto, “Earthquake slip weakening and asperities explained by thermal pressurization.”, Nature, Vol 436, pp. 689–692, 2005.
[59] C. M. Yang, W. L. Yu, J. J. Dong, C.Y. Kuo, T. Shimamoto, C.T. Lee, T. Togo and Y. Miyamoto, “Initiation, movement, and run-out of the giant Tsaoling landslide What can we learn from a simple rigid block model and a velocity-displacement dependent friction law?”, Engineering Geology, Vol 182, pp. 158-181, 2014.
[60] L. Yao, S. Ma, J. D. Platt, A. R. Niemeijer and T. Shimamoto, “The crucial role of temperature in high-velocity weakening of faults: Experiments on gouge using host blocks with different thermal conductivities.”, Geology, Vol 44, No. 1, pp. 63-66, 2016.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2019-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明