博碩士論文 105626005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.94.129.211
姓名 曾怡潔(I-Chieh Tseng)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 蒸發散與入滲對土壤含水量與地下水位變動之 影響研究
(Effects of evapotranspiration and infiltration on variations in soil moisture and changes in groundwater levels)
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
★ 生地化反應數值模式 – BIOGEOCHEM 互動式圖形使用者介面的開發與應用★ 結合季長期天氣預報與水文模式推估石門水庫入流量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-1-23以後開放)
摘要(中) 蒸發散與降雨入滲是地表與大氣間水氣交換的主要通量,了解蒸發散與入滲現象是如何改變土壤水分變化,並且進一步影響到地下水位改變,這是本研究主要目的。透過建置在中央大學氣象坪之持續水文與微氣象觀測,推估潛勢能蒸發散量、實際蒸發散量以及入滲量。針對降雨濕潤過程,利用土壤張力計與含水量計的觀測數據,推估入滲量與土壤保水曲線參數,透過分析含水量與地下水位的變化,解析含水量上升與地下水位上升之間的關係。而針對乾燥過程則是以土壤水分損失推估實際蒸發散量,並比較在乾燥過程中含水量與地下水位的變化。  
  分析資料為從2016/12/9至2018/9/31期間挑選乾燥與濕潤事件,結果顯示研究區域內的地下水呈現穩定的梯度,長期來看,側向的地下水流入與流出量相差並大。乾燥事件中平均側向入流量為0.102mm/hr,而平均流出量為0.117mm/hr;濕潤事件中的平均側向入流量為0.1mm/hr,而平均流出量為0.09mm/hr;所有長期平均(包含降雨剛停止後,或是斷斷續續的降雨事件等,無法判斷是否為乾燥或濕潤過程的情況)的側向入流量為0.041mm/hr,而平均流出量為0.042mm/hr,因此推論側向地下水流動對整體的地下水位的增減並沒有顯著影響。
  降雨事件時,地下水位的上升大致可以分成兩個階段,首先未飽和層在地表下400cm處之含水量尚未上升,也就是垂直入滲尚未抵達含水層,但有地下水位上升紀錄;第二個階段才是持續入滲抵達含水層。而且濕潤事件中,在孔隙水壓上升階段時,地下水側向流動並未有明顯改變,因此推論降雨初期地下水位的上升是因為近地表土壤含水量增加所形成地表靜水壓力上升的向下傳遞。整合2016/12/9至2018/9/31的事件中,可以發現地下水位上升的時間要比-400cm含水量上升時間平均早約9.5小時,而在雨水入滲至地下水位後,側向的入流、出流量才會開始有明顯的改變。挑選許多降雨事件的統整與歸納後,對中大氣象坪地區而言,累積降雨量要達到約40mm時,水分才有入滲至地下水位的現象(即-400cm含水量有上升的現象)。乾燥過程中也發現類似現象,由於地下水位在未降雨時側向的流入與流出差異不大,但是-400cm處含水量尚未顯著降低時,地下水位就下降,因此推論蒸發散使近地表孔隙水壓下降,近地表土壤含水量的下降也會因靜水壓力下降出現地下水位下降的現象。 
摘要(英) Evapotranspiration (ET) and rainfall infiltration (RI) are primary fluxes of water exchanges between land surface and atmosphere. The objectives of this study is to investigate how ET and RI affect soil moisture and groundwater variations. Integrated hydrometeorology measurements were established at the meteorology station inside the campus of National Central University to provide continued observations for calculations of potential ET, real ET, and RI values. During rainfall wetting period, tensiometers and soil moisture sensors provide estimations of RI and parameters of soil characteristic curves. During non-rainfall drying periods, amounts of real ET were estimated by losses of soil moisture. Changes of soil moisture and groundwater levels were analyzed to investigate connections of soil moisture and groundwater during wetting and drying processes.
  Data selected from 2016/12/9 to 2018/9/31 were separated into wet events and dry events. Persistent groundwater flow gradients were observed. For wet events, averaged groundwater inflow and outflow velocities are 0.102 mm/hr and 0.117 mm/hr, respectively. For dry events, averaged groundwater inflow and outflow velocities are 0.1 mm/hr and 0.09 mm/hr, respectively. Long-term averaged (for example: after the rain has just stopped, or intermittent rain events, that is, it is impossible to determine whether it is a dry or wet process event.) groundwater inflow and outflow velocities are 0.041 mm/hr and 0.042 mm/hr, respectively. Regional groundwater inflow and outflow do not have significant effects on changes of groundwater levels.
  During rainfall events, the rise of groundwater levels were caused by two different effects. The first one is due to the increase of near surface hydrostatic pressures as the increase groundwater levels were early than that of soil moisture at -400 cm. This hypothesis was supported by insignificant differences between groundwater inflow and outflow velocities. The later second effect is the recharge of infiltrated water. Rainfall events observed between 2016/12/9 and 2018/9/31, the rise of groundwater levels are 9.5 hours earlier than the increase of soil moisture at -400 cm. After the infiltrated water reach saturated zones, significant differences between groundwater inflow and outflow velocities were observed. Based on rainfall events analyzed in this study, 40 mm of accumulated rainfall is capable to induce sufficient infiltration to cause the increase of soil moisture at -400 cm and reach saturated zone subsequently. For dry events, declines of groundwater levels were earlier than decreases of soil moisture at -400 cm. It is suspected that the declines of groundwater levels were induced by the decrease of soil moisture due to reduces of near surface (i.e., above -400 cm) hydrostatic pressure. This hypothesis was supported by differences between groundwater inflow and outflow velocities were insignificant during dry events. Drying or wetting in near surface soil moisture will induce changes in groundwater levels to quickly reflect changes of near surface hydrostatic pressures caused by variations of soil moistures due to ET and RI.
關鍵字(中) ★ 地下水
★ 蒸發散量
★ 入滲量
★ 土壤含水量
關鍵字(英) ★ Groundwater
★ Evapotranspiration
★ Infiltration
★ Soil moisture
論文目次 摘要 II
ABSTRACT IV
致謝 VI
目錄 VII
圖目錄 X
表目錄 XV

一、緒論 1
1.1研究動機 1
1.2研究目的 1
1.3研究流程 2
二、文獻回顧 3
2.1 土壤保水曲線推估 3
2.1.1 土壤保水曲線相關之研究 3
2.1.2 土壤保水曲線計算方式 5
2.1.3 土壤遲滯效應 5
2.2 蒸發散量推估 6
2.2.1蒸發散量相關研究 7
2.2.2 土壤含水量與蒸發散量之關係 8
2.2.3 實際蒸發散量與潛勢能蒸發散量之互補理論 9
2.3 入滲量推估 10
2.3.1 入滲相關研究 10
2.3.2 計算入滲量的方法 11
2.3.3 靜水壓力效應 12
三、研究區域 13
3.1中大氣象坪概況 13
3.2中大氣象坪儀器設置 14
四、研究方法 17
4.1 推估土壤保水曲線 17
4.1.1 Campbell法計算土壤保水曲線 17
4.1.2 Van Genuchten法計算土壤保水曲線 17
4.2 入滲量計算 18
4.2.1 計算土壤水力傳導係數 18
4.2.3 計算入滲量 19
4.3 蒸發散量計算 19
4.3.1 淨輻射計算 20
4.3.2 潛勢能蒸發量計算 21
4.3.3 實際蒸發量計算 23
五、結果與討論 25
5.1 土壤保水曲線計算結果 25
5.1.1 Campbell方法 30
5.1.2 Van Genuchten方法 34
5.1.3 比較Van Genuchten以及campbell兩種方法 37
5.2 入滲量計算結果 46
5.2.1 入滲量計算結果 48
5.2.2 入滲量與含水量變化的關係 51
5.2.3 入滲量與地下水位變動的關係 55
5.2.4 靜水壓力與地下水位的上升 62
5.3 蒸發散量計算結果 66
5.3.1 潛勢能蒸發散量計算結果 66
5.3.2 實際蒸發散量的計算 70
5.3.3 蒸發散量與地下水位變化之關係 76
5.4 整合地下水與土壤含水量的關係 82
六、結論與建議 86
6.1 結論 86
6.2 建議 87
七、參考文獻 89
附錄A 98
附錄B 102
參考文獻 [1] Bodman, G. B., “Lectures on the elementary physics of soil moisture with application,” National Taiwan University, Taiwan, ROC, 1958.
[2] Bowen, I.S.,“ The Ratio of Heat Losses by Conduction and by Evaporation from Any Water Surface.,” Physical Review, 27, pp. 779-787.
[3] Brooks R. H. and A. T. Corey,” HYDRAULIC PROPERTIES OF POROUS MEDIA”, KYDROLOOY PAPERS, COLORADO STATE UNIVERSITY, 1964.
[4] Brutsaert, W. and M.B. Parlange,” Hydrological Cycle Explains the Evaporation Paradox”, Nature, 396, pp. 30.
[5] Chen Xi and Qi Hu,” Groundwater influences on soil moisture and surface evaporation”, Journal of Hydrology, Vol 297, pp. 285-300, 2004.
[6] Clapp B. Roger, George M. Hornberger,” Empirical equations for some soil hydraulic properties”, Water Resources Research, pp. 601-604, 1978.
[7] Cornelis, M., M. Khlosi, R. Hartmann, M. Van Meirvenne, B. De Vos,” Comparison of Unimodal Analytical Expressions for the Soil-Water Retention Curve”, Soil Sci. Soc. Am. J., pp. 1902–1911, 2005.
[8] David (Shih Ching-Fang),” Groundwater storage inferred from earthquake activities around East Asia and West Pacific Ocean”, Journal of Hydrology, Vol 544, pp. 363–372, 2017.
[9] Devito K.J., A.R. Hill, N. Roulet,” Groundwater-surface water interactions in headwater forested wetlands of the Canadian Shield, Journal of Hydrology, Vol 181, pp. 127-147, 1996.
[10] Enrique R. Vivoni, Hernan A. Moreno, Giuseppe Mascaro,” Observed relation between evapotranspiration and soil moisture in the North American monsoon region”, Geophysical Research Letters, Vol 35., 2008.
[11] Esmaiel Malek, Gail E Bingham, Greg D. McCurdy,” Continuous measurement of aerodynamic and alfalfa canopy resistances using the Bowen ratio-energy balance and Penman-Monteith methods”, Boundary-Layer Meteorology, 59(1), pp. 187-194, 1992.
[12] Fredlund, D.G. and H., Rahardjo,” Sol-Gel Relative Humidity Sensors: Impact of Electrode Geometry on Performance in Soil Suction Measurements”, Journal of Sensor Technology, 7(1), 1993.
[13] Gardner, W. H., J. A. Widtsoe, “The movement of soil moisture,” Soil Sci. Soc. Am. J. vol. 11, pp. 230-241, 1921.
[14] Gardner, W. H., J. A. Widtsoe, “The movement of soil moisture,” Soil Sci. Soc. Am. J. vol. 11, pp. 230-241, 1921.
[15] Hamon, W. R.,” Estimating potential evapotranspiration”, Journal of the Hydraulics, 87, pp. 107-120, 1961.
[16] HAN Xiang-Wei, Ming-An SHAO, R. HORTON,” Estimating van Genuchten Model Parameters of Undisturbed Soils Using an Integral Method”, Soil Science Society of China, 20(1), pp. 55–62, 2010.
[17] Huntington J. L., J. Szilagyi, S. W. Tyler, G. M. Pohll,” Evaluating the complementary relationship for estimating evapotranspiration from arid shrublands”, Water Resources Research, Vol. 47, 2011.
[18] Jagdish Krishnaswamy, The groundwater recharge response and hydrologic services of tropical humid forest ecosystems to use and reforestation: Support for the “infiltration-evapotranspiration trade-off hypothesis’’, Journal of Hydrology, Vol 498, pp. 191-209, 2013.
[19] Jan, C. D., T. H. Chen, W. C. Lo,” Effect of rainfall intensity and distribution on groundwater level Fluctuations”, J. Hydrology, Vol 332, pp. 348-360, 2007.
[20] Karssenberg D. Lam D., B. J. J. M. van den Hurk, M. F. P. Bierkens,” Spatial and temporal connections in groundwater contribution to evaporation”, Hydrol. Earth Syst. Sci., Vol 15, pp. 2621–2630, 2011.
[21] Kostiakov, A. N., “On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration,” Trans. Sixth Comm. Intern. Soil Sci. Soc. Russian, part A, pp. 17-21, 1932.
[22] Kusum D., Kedar N. D., “Optimization of infiltration parameters in hydrology,” World Journal of Modelling and Simulation, vol. 4, No. 2, pp. 120-130, 2008.
[23] Malek and Bingham,” Comparison of the Bowen ratio-energy balance and the water balance methods for the measurement of evapotranspiration”, Journal of Hydrology, 146 (1993), pp. 209-220 1993.
[24] Mathias Simon A., James P.R. Sorensen, Adrian P. Butler,” Soil moisture data as a constraint for groundwater recharge estimation”, Journal of Hydrology, Vol 552, pp. 258–266, 2017.
[25] Matlan Siti Jahara, Muhammad Mukhlisin, Mohd Raihan Taha,” Performance Evaluation of Four-Parameter Models of the Soil-Water Characteristic Curve”, The Scientific World Journal, 2014.
[26] Mishra, S.K., J. V. Tyagi and V. P. Singh,” Comparison of infiltration models”, Hydrol. Process., Vol. 17, pp. 2629-2652, 2003.
[27] Monteith J.L.,” Influence of Potential Evapotranspiration on the Water Balance of Sugarcane Fields in Maui, Hawaii”, Journal of Water Resource and Protection, Vol 6 No.9, 1965.
[28] Mualem,Y., “A new model for predicting the hydraulic conductivity of unsaturated porous media,” Water Resources Research, vol. 12, no. 3, pp. 513~522, 1976.
[29] Musgrave, G. W., “How much of rain enters the soil,’’ U.S.D.A. yearbook, water, pp.151-159, 1955.
[30] Osman, S. M., Sallem M., Muhammad A., Imran S. and Saqib A., “Adoption of Kostiakov Model to Determine the Soil Infiltration for Surface Irrigation Methods under Local Conditions,” Int. J. Agri. Biol., Vol. 5, No. 1, pp. 40-42, 2003.
[31] Perrens S. J., K. K. Watson,” Numerical analysis of two‐dimensional infiltration and redistribution”, Water Resources Research, Vol 13, pp. 781-790, 1977.
[32] Priestley, C.H.B. & Taylor, R.J.,” On the assessment of the surface heat flux and evaporation using large-scale parameters.”, Mon. Weather, Rev.100 (2), pp. 81-92, 1972.
[33] Ramı´rez A. Jorge, Michael T. Hobbins,” Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis”, GEOPHYSICAL RESEARCH LETTERS, Vol 32, pp. L15401, 2005.
[34] Rihani F. Jehan, Reed M. Maxwell, Fotini K. Chow,” Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes”, Water Resources Research, Vol 46, 2010.
[35] Rye, C.F. and K.R.J. Smettem,” The effect of water repellent soil surface layers on preferential flow and bare soil evaporation”, Geoderma, Vol 289, pp. 142–149, 2017.
[36] S. J. PERRENS and K. K. WATSON,” Numerical Analysis of Two-Dimensional Infiltration and Redistribution”, Water Resources Research, Vol. 13, pp781-790, 1977.
[37] S. O. Grinevskii, M. V. Novoselova,” Regularities in the Formation of Groundwater Infiltration Recharge”, Water Resources Research, Vol. 38, No. 2, pp. 175-186, 2011.
[38] Shanafield M., P. G. Cook, H. A. Gutiérrez-Juradoa, R. Faux, J. Cleverly, D. Eamus,” Field comparison of methods for estimating groundwater discharge by evaporation and evapotranspiration in an arid-zone playa”, Journal of Hydrology, Vol 527, pp. 1073-1083, 2017.
[39] Shanafield Margaret, Peter G. Cook, Hugo A. Gutiérrez-Juradoa, Ralph Faux, James Cleverly, Derek Eamus,” Field comparison of methods for estimating groundwater discharge by evaporation and evapotranspiration in an arid-zone playa”, Journal of Hydrology, Vol 527, pp. 1073–1083, 2015.
[40] Sillers W. S., D. G. Fredlund, N. Zakerzaheh,” Mathematical attributes of some soil-water characteristic curve models”, Geotechnical and Geological Engineering, Vol 19, no. 3-4, pp. 243–283, 2001.
[41] Stefan J. Kollet, Reed M. Maxwell,” Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model Water Resources”, Advances in Water Resources, Vol 29, pp. 945-958, 2006.
[42] Taylor G.H., C. Daly, W. P. Gibson,” Development of a new Oregon annual precipitation map using the PRISM model, The state Climatologist, 17(2), pp. 1-4, 1993.
[43] Thornthwaite, C. W.,” An approach towards a rational classification of climate”, Geographical Review, Vol 38, pp. 55–94.
[44] van der Kamp G., H. Maathuis,” Annual fluctuations of groundwater levels as a result of loading by surface moisture”, Journal of Hydrology, Vol 127, pp.137-152, 1991.
[45] Van Genuchten, M. T., and D. R. Nielsen,” On describing and predicting the hydraulic properties of unsaturated soils”, Annales Geophys, 3(5), pp. 615-628, 1985.
[46] Wang J. and R.L. Bras,” Ground heat flux estimated from surface soil temperature”, Journal of Hydrology, Vol 216, pp. 214–226, 1999.
[47] Wang Xingwang and Zailin Huo,” Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics”, Journal of Hydrology, Vol 543, p501–509, 2016.
[48] Wang, X., Z. Huo, S. Feng, P. Guo, H. Guan,” Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics” Journal of Hydrology, Vol 543B, pp. 501-509, 2016.
[49] Zhanga Hongjuan and Wolfgang Kurtza,” Comparison of different assimilation methodologies of groundwater levels to improve predictions of root zone soil moisture with an integrated terrestrial system model”, Advances in Water Resources, Vol 111, pp. 224–238, 2018.
[50] Zuo Hongchao, Bolong Chen, Shixin Wang, Yang Guo, Bin Zuo, Liyang Wu, Xiaoqing Gao,” Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type”, Agricultural and Forest Meteorology, Vol 222, pp. 1–9, 2016.
[51] 王如意、易任,應用水文學,國立編譯館,台灣,1986。
[52] 何美滿,「植被與土壤系統蒸發散量模擬之研究」,水文與海洋科學研究所,碩士論文,2001。
[53] 吳秉諭,「應用陸面過程模式模擬蓮華池試驗集水區地表通量」,水文與海洋科學研究所,碩士論文,2001。
[54] 呂殿青、邵明安,「非飽和土壤水力參數的模型及確定方法」,中國應用生態學報,15 (1), pp. 163-166,2002.
[55] 李光敦,水文學(第三版),五南圖書出版股份有限公司,台北,2005。
[56] 李明旭,「地表地下水整合數值模式於地下水資源管理應用之研究(3/3) 」,經濟部水利署,附錄八,2016。
[57] 李明旭,「地表過程質傳與熱傳通量研究(2/2)」,行政院國家科學委員會專題,研究計畫成果報告,2005。
[58] 李明旭,「地表過程質傳與熱傳通量研究(I)」,行政院國家科學委員會補助專題,研究計畫期中進度報告,2004。
[59] 李鳳梅、許世孟、王逸民,「GPS、雨量與地下水位之關聯性研究」,第八屆地下水資源及水質保護研討會暨2014兩岸地下水與水文地質應用研討會,國立成功大學,台南縣,2014。
[60] 林宗翰,「以廣義有限差分法求解地下水之流動與土壤入滲問題」,國立臺灣海洋大學河海工程學系,碩士論文,2017。
[61] 林俐玲,「應用土壤粒徑分布模式推估土壤水分特性曲線之研究」,國立中興大學水土保持學系,碩士論文,2013。
[62] 林進國,「降雨和地下水位變化之關聯性分析」,國立成功大學水利及海洋工程研究所,碩士論文,2003。
[63] 林錦源,「應用土壤含水量觀測推估蒸發散量之研究」,國立成功大學水利及海洋工程研究所,碩士論文,2006。
[64] 邱奕霖,「地表過程蒸發散之觀測與分析」,水文與海洋科學研究所,碩士論文,2005。
[65] 施鈞程,「台灣森林集水區之蒸發散量推估」,國立中興大學水土保持學系,碩士論文,2003。
[66] 洪銘鴻,「土壤水分特性曲線應用於不飽和崩積土壤邊坡穩定分析之研究」,台灣科技大學營建工程系,碩士論文,2010。
[67] 徐年盛、江崇榮、汪中和,「地下水系統水平衡分析與補注源水量推估之研究」,中國土木水利工程學刊,第二十三卷第四期,2011。
[68] 桃園市政府衛生局:城市簡介-地理環境及氣候。2016/10/21,取自: https://goo.gl/FcrsHw。
[69] 張良正、陳宇文、蔡瑞彬、王雲直、陳祐誠,「結合分佈型地下水歷線法與數值模式於區域地下水補注量之推估-以濁水溪沖積扇與屏東平原為例」,經濟部中央地質調查所特刊,第27號,第13-38頁,2014。
[70] 張昭棟、耿杰,「井水位降雨影響的定量改正」,地震學報,第15卷第2期,1993。
[71] 張雁婷,「應用土壤水分變化推估常綠闊葉林蒸發散量」,水文與海洋科學研究所,碩士論文,2010。
[72] 張德鑫、梁庭維,「紅壤土之入滲試驗及參數推估」,農業工程學報,2011。
[73] 曹舜評、張圖杰,「砂箱不同剩餘水分之土壤水分特性曲線推估」,坡地防災學報,,10(1),2011。
[74] 郭怡馨,「蒸發皿蒸發率之風洞實驗」,國立中央大學土木工程學系,碩士論文,2009。
[75] 陳文福,「頻譜與濾波分析應用於地下水位變動研究」,中興工程,第95期,2007。
[76] 陳宗顯,「降雨引致地下水位變化之研究-以那菝、六甲與東和地下水位站為例」,國立成功大學水利及海洋工程研究所,博士論文,2006。
[77] 陳憲宗,「台灣長期皿蒸發量趨勢分析及蒸發互補關係初探」,農業工程學報,第62卷第1期,2016。
[78] 陸森、任圖生,「不同溫度下的土壤熱導率模擬」,農業工程學報,第25卷第七期,2009。
[79] 曾燕翔,「動態毛細壓力於土壤保水曲線之變化分析及現地長期入滲監測試驗」,國立臺灣海洋大學應用地球科學研究所,碩士論文,2016。
[80] 葉信富、王士銘、李哲瑋、李振誥,「利用有限氣象參數評估蒸發散量之研究」,作物、環境與生物資訊, pp. 203-218,2014。
指導教授 李明旭(Ming-Hsu Li) 審核日期 2019-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明