博碩士論文 105682601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:100.26.176.111
姓名 安拉蕊(Ratri Andinisari)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱
(Crustal Seismicity of the eastern Hellenic volcanic arc: Its relationship with active faulting and volcanic centers)
相關論文
★ Seismic Activity along the Santorini-Amorgos Zone Based on Data from Temporary and Permanent Seismic Networks
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 愛琴海下方非洲板塊的隱沒形成了希臘隱沒帶和火山弧,控制著愛琴海南部的地震活動,包括愛琴海東南部和聖托里尼-阿莫爾戈斯帶。 由於存在活動斷層和各種變形地形,這些地區還受到非洲板塊回滾引起的伸展變形的影響。 因此,此論文旨在確定這些活動斷層和火山中心如何塑造觀測到的地殼地震活動。 由於這些地區發生了中大型地殼地震(Mw>6),我們還對繪製的活動斷層的潛勢進行了評估。
2002年到2020年間,被臨時和永久地震測震網所記錄的地震運動,我們藉著最小一維速度模型重新定位,以獲得精確的相對位置。 在愛琴海東南部,這些位置能夠描繪出大部分活動斷層。 另一方面,沿聖托里尼-阿莫爾戈斯帶重新定位的地震活動只能描繪出八個活動斷層中的三個,表示這些活動可能不僅僅是由活動斷層引起的。相反地,重新定位的地震分佈也告訴了我們安德羅斯島和聖托里尼-阿莫爾戈斯東北部段下方的兩個垂直地震群,可能是向上遷移流體的通道。
岩石物理參數的側向分佈和全矩張量解後來被用來確定地殼地震活動與沿聖托里尼-阿莫爾戈斯帶的流體之間的關係。在垂直地震群位置發現的高 Vp/Vs 比 (1.77-1.86)、裂縫密度 (0.15-0.30) 和流體飽和度 (0.71-0.76) 顯示存在流體並加強了這些結構確實可能存在的可能性與向上的流體遷移有關。發生在 Kolumbo 海底火山和 Anydros 島下方的微地震,藉由 P 波極性和 SV/P、SH/P 振幅比的矩張量反演,指出指出矩張量解和非雙耦合有正相關分量。這暗示微地震可能是由流體運移過程中裂縫的開合所產生的拉伸斷層引起的。
地震危害度評估是通過利用考慮了孕震層厚度的經驗關係來估計每個活動斷層的預期地震規模來進行的。 研究區發孕層厚度為12.1~15.4km。 兩個地區斷層未來地震的預期的地震矩規模在5.9-7.2之間。 由於這些斷層大多位於外海,由這些外海斷層中的任何一個破裂引起的主震都可能伴隨著海嘯。
摘要(英) The subduction of the African plate beneath the Aegean has formed the Hellenic subduction zone that controls the seismicity across the southern Aegean, including SE Aegean and the Santorini-Amorgos zone. These areas are also affected by extensional deformation due to the slab rollback of the African lithosphere that is evidenced by the existence of active faults and a variety of deforming terrains. Therefore, this thesis aims to determine how these active faults and volcanic centers shape the observed crustal seismicity. Since moderate to large crustal earthquakes (Mw>6) have occurred previously in these areas, this thesis also assesses the potential seismic hazard with respect to the mapped active faults.
The crustal events recorded by temporary and permanent seismic networks from 2002 to 2020 were relocated by using minimum 1D velocity models to obtain precise relative locations. In SE Aegean, these locations were able to delineate most of the active faults. On the other hand, the relocated crustal events along the Santorini-Amorgos zone could only delineate three out of eight active faults, indicating that these events may not be caused solely by active faulting. Instead, the relocated crustal events revealed two vertical clusters of earthquake beneath the island of Anydros and the NE segment of Santorini-Amorgos that may be pathways of upward migrating fluids.
Lateral distributions of petrophysical parameters and full moment tensor solutions for the well-constrained events were later used to determine the relationship between crustal seismicity and fluids along the Santorini-Amorgos zone. High Vp/Vs ratios (1.77-1.86), crack density (0.15-0.30), and fluid saturation (0.71-0.76) found at the locations of the vertical earthquake clusters indicate the existence of fluids and strengthened the possibility that these structures may indeed be related to upward fluid migration. The moment tensor inversion of P-wave polarities and SV/P, SH/P amplitude ratios for microearthquakes that occurred beneath Kolumbo submarine volcano and Anydros island resulted in moment tensor solutions with positively correlated non-DC components. This signifies that the microearthquakes may be caused by tensile faulting generated by the opening and closing of cracks during the fluid migration.
The seismic hazard assessment was performed by utilizing empirical relationships that take into account the seismogenic layer thickness to estimate expected earthquake magnitude of each active fault. The seismogenic layer thickness of the study areas is ranging from 12.1 km to 15.4 km. Expected moment magnitudes of future earthquakes of the faults in both areas vary between 5.9-7.2. Since these faults are mostly located offshore, a mainshock caused by the rupture of any of these offshore faults may be followed by a tsunami.
關鍵字(中) ★ 愛琴海
★ 地殼地震
★ 流體
★ 矩張量
★ 地震危險
關鍵字(英) ★ Aegean
★ crustal earthquake
★ fluids
★ moment tensor
★ seismic hazard
論文目次 摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xi
CHAPTER I : A REVIEW OF SEISMOTECTONICS OF THE SOUTHERN AEGEAN 1
1.1. Introduction 1
1.2. The SE Aegean 2
1.2.1. Tectonic setting of the SE Aegean 2
1.2.2. Seismicity distribution 2
1.2.3. Nisyros-Kos-Yali volcanic complex 3
1.3. The Santorini-Amorgos zone 3
1.3.1. Tectonic setting of the Santorini-Amorgos zone 3
1.3.2. Seismicity distribution 4
1.3.3. Santorini caldera 4
1.3.4. Kolumbo submarine volcano 5
1.4. Aims of this thesis 6
1.5. Summary and structure of the thesis 7
CHAPTER II : SEISMIC NETWORKS 16
2.1. Introduction 16
2.2. CYCNET 16
2.3. EGELADOS 16
2.4. HUSN 17
2.5. KOERI 17
CHAPTER III : ABSOLUTE AND RELATIVE LOCATIONS OF CRUSTAL EARTHQUAKES 22
3.1. Introduction 22
3.2. Data description 22
3.3. Minimum 1D velocity model of SE Aegean 23
3.3.1. Inversion methodology 23
3.3.2. Results 24
3.3.3. Robustness tests 25
3.4. Crustal earthquake locations 26
3.4.1. Estimation of absolute location 26
3.4.1.1. The NonLinLoc package 26
3.4.1.2. Methodology and parameterization 27
3.4.1.3. Results 27
3.4.2. Estimation of precise relative locations 29
3.4.2.1. The double difference algorithm (HypoDD) 29
3.4.2.2. Methodology and parameterization 30
3.4.2.3. Results for SE Aegean 32
3.4.2.4. Results for the Santorini-Amorgos zone 34
CHAPTER IV : CRUSTAL SEISMICITY AND FLUIDS ALONG THE SANTORINI-AMORGOS ZONE 63
4.1. Introduction 63
4.2. Rock properties of the Santorini-Amorgos zone 63
4.2.1. Estimation of Vp/Vs ratio 63
4.2.2. Estimation of crack density and fluid saturation 65
4.2.3. Results 66
4.3. Moment tensor inversion of microearthquakes 67
4.3.1. Data preprocessing 67
4.3.1.1. Seismogram rotation and filtering 67
4.3.1.2. Attenuation correction 68
4.3.1.3. Free-surface effects correction 68
4.3.2. Inversion methodology 70
4.3.3. Stability of the moment tensor solutions 71
4.3.4. Characteristics of the moment tensor solutions 72
4.3.5. Results 74
4.3.5.1. Kolumbo submarine volcano 74
4.3.5.2. Anydros island 74
CHAPTER V : ACTIVE FAULTS, SEISMOGENIC LAYER THICKNESS, AND SEISMIC HAZARD 86
5.1. Introduction 86
5.2. Seismogenic layer thickness and expected magnitudes 86
5.3. Results 87
5.3.1. Active faults in SE Aegean 87
5.3.1.1. Fault segments along the Gulf of Gökova 88
5.3.1.2. Hisarönü and Kos faults 89
5.3.1.3. Fault segments around Nisyros 89
5.3.1.4. Fault segments around Karpathos 90
5.3.2. Active faults in the Santorini-Amorgos zone 91
5.3.2.1. Ios and Anydros faults 92
5.3.2.2. Amorgos and Santorini-Amorgos faults 92
5.3.2.3. Anafi and west Astypalaia faults 94
5.3.2.4. Levitha and east Astypalaia faults 95
CHAPTER VI : DISCUSSION AND CONCLUSIONS 101
6.1. Crustal seismicity distribution 101
6.1.1. SE Aegean 101
6.1.2. The Santorini-Amorgos zone 102
6.2. Fluids and crustal seismicity along the Santorini-Amorgos zone 103
6.2.1. Lateral distribution of fluids 103
6.2.2. Kolumbo submarine volcano 104
6.2.3. Anydros island 105
6.3. Estimation of the potential seismic hazard 106
6.4. Limitations of current work 107
6.5. Suggestions for future work 108
6.6. Conclusions 109
REFERENCES 116
APPENDIX A 126
APPENDIX B 131
APPENDIX C 145
APPENDIX D 189
參考文獻 Aki, K., Richards, P., (2002). Quantitative Seismology, 2nd Edition. University Science Books, Sausalito.
Ambraseys, N., (1960). The seismic sea wave of July 9, 1956, in the Greek Archipelago. Journal of Geophysical Research, 65, 1257–1265. https://doi.org/10.1029/JZ065i004p01257
Bachmann, O., Allen, S. R., de Maisonneuve, C. B., (2019). The Kos–Nisyros–Yali Volcanic Field. Elements, 15 (3), 191–196. https://doi.org/10.2138/gselements.15.3.191
Berryman, J. G., (1980). Long‐wavelength propagation in composite elastic media II, Ellipsoidal inclusions. The Journal of the Acoustical Society of America 68, 1820-1831. https://doi.org/10.1121/1.385172
Bocchini, G. M., Brüstle, A., Becker, D., Meier, T., van Keken, P.E., Ruscic, M., Papadopoulos, G.A., Rische, M., Friederich, W., (2018). Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity. Tectonophysics, 734–735, 96-118, https://doi.org/10.1016/j.tecto.2018.04.002
Bohnhoff, M., Harjes, H.P., Meier, T., (2005). Deformation and stress regimes in the Hellenic subduction zone from focal mechanisms. Journal of Seismology, 9 (3), 341–366, https://doi.org/10.1007/s10950-005-8720-5
Bohnhoff, M., Rische, M., Meier, T., Becker, D., Stavrakakis, G., Harjes, H.P., (2006). Microseismic activity in the Hellenic Volcanic Arc, Greece, with emphasis on the seismotectonic setting of the Santorini Amorgos Zone. Tectonophysics 423 (1–4), 17–33. https://doi.org/10.1016/j.tecto.2006.03.024
Bohnhoff, M., Rische, M., Meier, T., Endrun, B., Harjes, H.-P., Stavrakakis, G., (2004). A temporary seismic network on the Cyclades (Aegean Sea, Greece). Seismology Research Letter, 75(3), 352–357. https://doi.org/10.1785/gssrl.75.3.352Meier et al., 2004
Bostock, M. G., (1998). Mantle stratigraphy and evolution of the Slave province. Journal of Geophysical Research, 103(B9), 21183– 21200, https://doi.org/10.1029/98JB01069
Browning, J., Drymoni, K., Gudmundsson, A., (2015). Forecasting magma-chamber rupture at Santorini volcano, Greece. Scientific Reports, 5, 15785, https://doi.org/10.1038/srep15785
Brüstle, A., (2012). Seismicity of the eastern Hellenic Subduction Zone. Ph.D. thesis, Ruhr University, Bochum.
Brüstle, A., Friederich, W., Meier, T., and Gross, C., (2014) Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms. Solid Earth, 5, 1027–1044. https://doi.org/10.5194/se-5-1027-2014
Byrd, R. H., Hribar, M. E., Nocedal, J., (1999). An Interior Point Algorithm for Large-Scale Nonlinear Programming. SIAM Journal on Optimization, Vol 9, No. 4, pp. 877–900.
Cambaz, M. D., Turhan, F., Yılmazer, M., Kekovalı, K., Necmioğlu, Ö., Kalafat, D., (2019). A Review on Kandilli Observatory and Earthquake Research Institute (KOERI) Seismic Network and Earthquake Catalog: 2008–2018. Advances in Geosciences, 51, 15-23, https://doi.org/10.5194/adgeo-51-15-2019, 2019
Cantner., K., Carey, S., Nomikou, P., (2014). Integrated volcanologic and petrologic analysis of the 1650AD eruption of Kolumbo submarine volcano, Greece. Journal of Volcanology and Geothermal Research, 269, 28-43, https://doi.org/10.1016/j.jvolgeores.2013.10.004
Caputo, R., Pavlides, S., (2013). The Greek Database of Seismogenic Sources (GreDaSS), Version 2.0.0: a Compilation of Potential Seismogenic Sources (Mw & 5.5) in the Aegean Region. https://doi.org/10.15160/unife/gredass/0200. http://gredass. unife.it/
Carey, S., Nomikou, P., Bell, K. C., Lilley, M., Lupton, J., Roman, C., Stathopoulou, E., Bejelou, K., Ballard., R., (2015). CO2 degassing from hydrothermal vents at Kolumbo submarine volcano, Greece, and the accumulation of acidic crater water. Geology, 41 (9), 1035–1038, https://doi.org/10.1130/G34286.1
Comninakis, P. and Papazachos, B., (1986). A catalogue of earthquakes in Greece and the surrounding area for the period 1901–1985. Univ. Thessaloniki Geophys. Lab. Publ.
Corti, G., Bonini, M., Conticelli, S., Innocenti, F., Manetti, P., & Sokoutis, D., (2003). Analogue modelling of continental extension: A review focused on the relations between the patterns of deformation and the presence of magma. Earth-Science Reviews, 63(3–4), 169–247. https://doi.org/10.1016/S0012-8252(03)00035-7
Dimitriadis I., Karagianni E., Panagiotopoulos D.G., Papazachos C., Hatzidimitriou P., Bohnhoff M., Rische M. and T. Meier, (2009). Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network. Tectonophysics, 465, 136-149, https://doi.org/10.1016/j.tecto.2008.11.005
Dimitriadis, I., Papazachos, C., Panagiotopoulos, D., Hatzidimitriou, P., Bohnhoff, M., Rische, M., & Meier, T., (2010). P and S velocity structures of the Santorini-Coloumbo volcanic system (Aegean Sea, Greece) obtained by non-linear inversion of travel times and its tectonic implications. Journal of Volcanology and Geothermal Research, 195(1), 13–30. https://doi.org/10.1016/j.jvolgeores.2010.05.013
Druitt, T. H., Pyle, D. M., Mather, T. A. (2019). Santorini Volcano and its Plumbing System. Elements, 15(3), 177–184. doi:10.2138/gselements.15.3.177
Ebelling, C. W., Okal, E. A., Kalligeris, N., Synolakis, C. E., (2012). Modern seismological reassessment and tsunami simulation of historical Hellenic Arc earthquakes. Tectonophysics, 530–531, 225-239, https://doi.org/10.1016/j.tecto.2011.12.036
Efron, B., Tibshirani, R., (1991). Statistical data analysis in the computer age. Science, 253, 390–395. https://doi.org/10.1126/science.253.5018.390
Evangelidis, C. P., Melis, N. S., (2012). Ambient Noise Levels in Greece as Recorded at the Hellenic Unified Seismic Network. Bulletin of the Seismological Society of America, 102 (6), 2507–2517, https://doi.org/10.1785/0120110319
Eyidoğan, H., Jackson, J., (1985). A seismological study of normal faulting in the Demirci, Alaşehir and Gediz earthquakes of 1969–70 in western Turkey: Implications for the nature and geometry of deformation in the continental crust. Journal of Geophysical Research, 81, 569–607, doi:10.1111/j.1365-246X.1985.tb06423.x
Friederich, W., Meier, T., (2005). EGELADOS project 2005/07, RUB Bochum, Germany. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/m87550267382
Friedrich, W.L. (2013). The Minoan Eruption of Santorini around 1613 B.C. and its consequences. Tagungen des Landesmuseums für Vorgeschichte Halle, 9, 37-48.
Frohlich, C., (1992). Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75, 193-198, https://doi.org/10.1016/0031-9201(92)90130-N
Ganas, A., Elias, P., Kapetanidis, V., Valkaniotis, S., Briole, P., Kassaras, I., Argyrakis, P., Barberopoulou, A., Moshou, A., (2019). The July 20, 2017 M6.6 Kos Earthquake: Seismic and Geodetic Evidence for an Active North-Dipping Normal Fault at the Western End of the Gulf of Gökova (SE Aegean Sea). Pure and Applied Geophysics, https://doi.org/10.1007/s00024-019-02154-y
Hardebeck, J. L., Shearer, P. M., (2003). Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes. Bulletin of the Seismological Society of America, 93 (6), 2434–2444, https://doi.org/10.1785/0120020236
Hauksson, E., Shearer, P. M., (2006). Attenuation models (QP and QS) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths. Journal of Geophysical Research, 111, B05302, doi:10.1029/2005JB003947
Heath, B. A., Hooft, E. E. E., Toomey, D. R., Papazachos, C. B., Nomikou, P., Paulatto, M., Morgan, J. V., Warner, M. R., (2019). Tectonism and its relation to magmatism around Santorini volcano from upper crustal P wave velocity. Journal of Geophysical Research: Solid Earth, 124, 10610– 10629. https://doi.org/10.1029/2019JB017699
Hollenstein, C., Müller, M. D., Geiger, A., Kahle, H.-G., (2008). Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics, 449(1), 17–40. https://doi.org/10.1016/j.tecto.2007.12.006
Hong, T.‐K., Houng, S. E., and Jo, E., (2014). Temporal changes of medium properties during explosive volcanic eruption, Geophysical Research Letter, 41, 1944–1950. doi:10.1002/2014GL059408
Hooft, E. E. E., Heath, B. A., Toomey, D. R., Paulatto, M., Papazachos, C. B., Nomikou, P., et al., (2019). Seismic imaging of Santorini: Subsurface constraints on caldera collapse and present‐day magma recharge. Earth and Planetary Science Letters, 514,48–61. https://doi.org/10.1016/j.epsl.2019.02.033
Hooft, E. E. E., Nomikou, P., Toomey, D. R., Lampridou, D., Getz, C., Christopoulou, M. E., O′Hara, D., Arnoux, G. M., Bodmer, M., Gray, M., Heath, B. A., VanderBeek, B. P., (2017). Backarc tectonism, volcanism, and mass wasting shape seafloor morphology in the Santorini-Christiana-Amorgos region of the Hellenic Volcanic Arc. Tectonophysics, 712–713, 396-414, https://doi.org/10.1016/j.tecto.2017.06.005
Hübscher, C., Ruhnau, M., Nomikou, P., (2015). Volcano-tectonic evolution of the polygenetic Kolumbo submarine volcano/Santorini (Aegean Sea). Journal of Volcanology and Geothermal Research, 291, 101-111, https://doi.org/10.1016/j.jvolgeores.2014.12.020
Jechumtálová, Z., Šílený, J., (2005). Amplitude ratios for complete moment tensor retrieval. Geophysical Research Letter, 32, L22303, https://doi.org/10.1029/2005GL023967
Jo, E., Hong, T. K., (2013). VP/VS ratios in the upper crust of the southern Korean Peninsula and their correlations with seismic and geophysical properties. Journal of Asian Earth Sciences, 66, 204-214. https://doi.org/10.1016/j.jseaes.2013.01.008
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., Brun, J. P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monié, P., Gueydan, F., Okay, A. I., Oberhänsli, R., Pourteau, A., Augier, R., Gadenne, L., & Driussi, O., (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597-598, 1–33, https://doi.org/10.1016/j.tecto.2012.06.011
Julian, B. R., (1986). Analysing seismic-source mechanisms by linear-programming methods. Geophysical Journal International, 84 (2), 431–443, https://doi.org/10.1111/j.1365-246X.1986.tb04364.x
Kapetanidis, V., Kassaras, I., (2019). Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms. Journal of Geodynamics, 123, 55-82, https://doi.org/10.1016/j.jog.2018.11.004
Karagianni, E. E., Papazachos, C. B., Panagiotopoulos, D. G., Suhaldoc, P., Vuan, A., Panza, G. F., (2005). Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophysical Journal International, 160, 127-143, https://doi.org/10.1111/j.1365-246X.2005.02354.x
Karasözen, E., Nissen, E., Büyükakpınar, P., Musavver, S. C., Kahraman, M., Kalkan Ertan, E., Abgarmi, B., Ghods, A., Özacar, A., (2018). The 20 July 2017 Mw 6.6 Bodrum–Kos earthquake illuminates active faulting in the Gulf of Gökova, SW Turkey. Geophysical Journal International, 214. https://doi.org/10.1093/gji/ggy114
Kennett, B.L.N., (1991). The Removal of free surface interactions from three‐component seismograms. Geophysical Journal International, 104: 153-154. https://doi.org/10.1111/j.1365-246X.1991.tb02501.x
Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D. Kradolfer, U., (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research, 99, 19,635–19,646
Klaver, M., Carey, S., Nomikou, P., Smet, I., Godelitsas, A., and Vroon, P. (2016), A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc, Geochemistry, Geophysics, Geosystems, 17, 3254–3273, doi:10.1002/2016GC006398
Konstantinou, K. I., (2010). Crustal rheology of the Santorini–Amorgos zone: Implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean. Journal of Geodynamics, 50, 5, 400-409. https://doi.org/10.1016/j.jog.2010.05.002
Konstantinou, K. I., (2014). Moment Magnitude–Rupture Area Scaling and Stress-Drop Variations for Earthquakes in the Mediterranean Region. Bulletin of the Seismological Society of America, 104, 5, https://doi.org/10.1785/0120140062
Konstantinou, K. I., (2017). Accurate relocation of seismicity along the North Aegean Trough and its relation to active tectonics. Tectonophysics, 717, 372-382, https://doi.org/10.1016/j.tecto.2017.08.021
Konstantinou, K. I., (2018). Estimation of optimum velocity model and precise earthquake locations in NE Aegean: Implications for seismotectonics and seismic hazard. Journal of Geodynamics, 121, 143-154, https://doi.org/10.1016/j.jog.2018.07.005
Konstantinou, K. I., Evangelidis, C. P., Liang, W. -T., Melis, N. S., Kalogeras, I., (2013). Seismicity, Vp/Vs and shear wave anisotropy variations during the 2011 unrest at Santorini caldera, southern Aegean, Journal of Volcanology and Geothermal Research, 267, 57-67, https://doi.org/10.1016/j.jvolgeores.2013.10.001
Konstantinou, K. I., Melis, N. S., Boukouras, K., (2010). Routine Regional Moment Tensor Inversion for Earthquakes in the Greek Region: The National Observatory of Athens (NOA) Database (2001– 2006). Seismology Research Letter, 81, 750-760, https://doi.org/10.1785/gssrl.81.5.750
Konstantinou, K. I., Mouslopoulou, V., Liang, W.‐T., Heidbach, O., Oncken, O., Suppe, J., (2016). Present‐day crustal stress field in Greece inferred from regional‐scale damped inversion of earthquake focal mechanisms. Journal of Geophysical Research: Solid Earth, 122, 506–523, https://doi.org/10.1002/2016JB013272
Konstantinou, K.I., (2020). Magma chamber evolution during the 1650 AD Kolumbo eruption provides clues about past and future volcanic activity. Scientific Reports, 10, 15423. https://doi.org/10.1038/s41598-020-71991-y
Kurt, H., Demirbağ, E., Kuşçu, İ., (1999). Investigation of the submarine active tectonism in the Gökova gulf, southwest Anatolia–southeast Aegean Sea, by multi-channel seismic reflection data. Tectonophysics 305(4):477–496, https://doi.org/10.1016/S0040- 1951(99)00037-2
Kuster, G. T., Toksoz, M. N., (1974). Velocity and attenuation of seismic waves in two-phase media, Part I, Theoretical formulations. Geophysics, 39 (5), 587–606. https://doi.org/10.1190/1.1440450
Lagios, E., Sakkas, V., Parcharidis, I., Dietrich, V., (2005). Ground deformation of Nisyros Volcano (Greece) for the period 1995–2002: Results from DInSAR and DGPS observations. Bulletin of Volcanology, 68, 201–214. https://doi.org/10.1007/s00445-005-0004-y
Le Pichon, X., Chamot-Rooke, N., Lallemant, S., Noomen, R., Veis, G., (1995). Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for eastern Mediterranean tectonics. Journal of Geophysical Research, 100(B7), 12,675–12,690. https://doi.org/10.1029/95JB00317
Lomax, A., Curtis, A., (2001). Fast, probabilistic earthquake location in 3D models using Oct-Tree importance sampling. Geophysical Research Abstracts, 3.
Lomax, A., Virieux, J., Volcant, P., Thierry-Berge, C., (2000). Probabilistic earthquake location in 3D and layered models, in Advances in seismic events location. 101-134 pp. Thurber, C. H., Rabinowitz, N. (eds), Amsterdam.
Makropoulos, K., Drakopoulos, J., and Latousakis, J., (1999). A revised and extended earthquake catalogue for Greece since 1900. Geophysical Journal International, 98, 391–394. https://doi.org/10.1111/j.1365-246X.1989.tb03360.x
Maleki, V., Hossein Shomali, Z., Hatami, M. R., Pakzad, M., Lomax, A., (2013). Earthquake relocation in the central Alborz region of Iran using a nonlinear probabilistic method. J. Seismol. 17, 615–628. https://doi.org/10.1007/s10950-012-9342-3
Mavko, G. M., (1980). Velocity and attenuation in partially molten rocks. Journal of Geophysical Research, 85 (B10), 5173– 5189, doi:10.1029/JB085iB10p05173
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O. Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M. N., Veis, G., (2000). Global positioning system constraints on plate kinematic and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695–5719. https://doi.org/10.1029/1999JB900351
McKenzie, D., (1972). Active Tectonics of the Mediterranean Region. Geophysical Journal of the Royal Astronomical Society, 30, 109-185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
McVey, B. G., Hooft, E.E.E., Heath, B.A., Toomey, D.R., Paulatto, M., Morgan, J.V., Nomikou, P., Papazachos C.B., (2020). Magma accumulation beneath Santorini volcano, Greece, from P-wave tomography. Geology, 48 (3), 231–235, doi: https://doi.org/10.1130/G47127.1
Menke, W., Levin, V., Sethi, R., (1995). Seismic attenuation in the crust at the mid-Atlantic plate boundary in south-west Iceland. Geophysical Journal International, 122, 175–182, https://doi.org/10.1111/j.1365-246X.1995.tb03545.x
Miller, A. D., Julian, B. R., Foulger, G. R., (1998). Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill–Grensdalur volcanic complex, Iceland. Geophysical Journal International, 133(2), 309–325, https://doi.org/10.1046/j.1365-246X.1998.00492.x
Miller, Angus D., (1996). Seismic structure and earthquake focal mechanisms of the Hengill volcanic complex, SW Iceland. Ph.D thesis, Durham University, Durham.
Newman, A. V., Stiros, S., Feng, L., Psimoulis, P., Moschas, F., Saltogianni, V., Jiang, Y., Papazachos, C., Panagiotopoulos, D., Karagianni, E., Vamvakaris, D., (2012). Recent geodetic unrest at Santorini Caldera, Greece. Geophysical Research Letter, 39, L06309, doi:10.1029/2012GL051286
Nocedal, J., Wright, S. J., (2006). Numerical Optimization, Second Edition. Springer Series in Operations Research, Springer Verlag.
Nomikou P, Krassakis P, Kazana S, Papanikolaou D, Koukouzas N., (2021) The Volcanic Relief within the Kos-Nisyros-Tilos Tectonic Graben at the Eastern Edge of the Aegean Volcanic Arc, Greece and Geohazard Implications. Geosciences, 11(6), 231, https://doi.org/10.3390/geosciences11060231
Nomikou, P., (2004). Geodynamic of Dodecanese islands: Kos and Nisyros volcanic field. Ph.D. thesis, University of Athens, Athens.
Nomikou, P., Carey, S., Papanikolaou, D., Croff Bell, K., Sakellariou, D., Alexandri, M., Bejelou, K., (2012). Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Global and Planetary Change, 90–91, 135–151. https://doi.org/10.1016/j.gloplacha.2012.01.001
Nomikou, P., Hübscher, C., Papanikolaou, D., Farangitakis, G. P., Ruhnau, M., & Lampridou, D., (2018). Expanding extension, subsidence and lateral segmentation within the Santorini - Amorgos basins during Quaternary: Implications for the 1956 Amorgos events, central - south Aegean Sea, Greece. Tectonophysics, 722, 138–153. https://doi.org/10.1016/J.TECTO.2017.10.016
Nomikou, P., Hübscher, C., Ruhnau, M., & Bejelou, K., (2016). Tectono-stratigraphic evolution through successive extensional events of the Anydros Basin, hosting Kolumbo volcanic field at the Aegean Sea, Greece. Tectonophysics, 671, 202–217. https://doi.org/10.1016/j.tecto.2016.01.021
Nomikou, P., Papanikolaou, D., (2011). Extension of active fault zones on Nisyros volcano across the Yali-Nisyros Channel based on onshore and offshore data. Marine Geophys. Res., 32. 181-192. https://doi.org/10.1007/s11001-011-9119-z
Nomikou, P., Papanikolaou, D., Pyle, D.M., Mather, T.A., Carey, S., Watts, A.B., Paulatto, M., Kalnins, M.L., Livanos, I., Bejelou, K., Simou, E., Perros, I., (2014). The emergence and growth of a submarine volcano: The Kameni islands, Santorini (Greece). GeoResJ, 1–2, 8–18. https://doi.org/10.1016/j.grj.2014.02.002
Nyst, M., Thatcher, W., (2004). New constraints on the active tectonic deformation of the Aegean. Journal of Geophysical Research, 109, B11406. https://doi.org/10.1029/2003JB002830
O′Connell, R. J., Budiansky, B., (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412– 5426, doi:10.1029/JB079i035p05412
Okal, E., Synolakis, C., Uslu, B., Kalligeris, N., Voukouvalas, E., (2009). The 1956 earthquake and tsunami in Amorgos, Greece. Geophysical Journal International, 178, 1533–1554. https://doi.org/10.1111/j.1365-246X.2009.04237.x
Özbakır, A. D., Şengör, A. M. C., Wortel, M. J. R., Govers, R., (2013). The Pliny–Strabo trench region: A large shear zone resulting from slab tearing. Earth and Planetary Science Letters, 375, 188-195, https://doi.org/10.1016/j.epsl.2013.05.025
Papazachos, B. C., Karakostas, V. G., Papazachos, C. B., Scordilis, E. M., (2000). The geometry of the Wadati–Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics, 319 (4), 275-300, https://doi.org/10.1016/S0040-1951(99)00299-1
Papazachos, B. C., Koutitas, Ch., Hatzidimitriou, P. M., Karacostas, B. G., Papaioannou, Ch. A., (1985). Source and short-distance propagation of the July 9, 1956 southern Aegean tsunami. Marine Geology, 65, 343–351, https://doi.org/10.1016/0025-3227(85)90064-7
Papazachos, B. C., Papazachou, C., (2003). The Earthquakes of Greece. Ziti Publications, Thessaloniki, pp. 317.
Park, S., Hong, T. K., Buurman, H., (2018). Temporal change of upper-crustal Vp/Vs ratios with volcanic evolution in Redoubt Volcano. Physics of the Earth and Planetary Interiors, 282, 39-48. https://doi.org/10.1016/j.pepi.2018.07.003
Parks, M. M., Moore, J. D. P., Papanikolaou, X., Biggs, J., Mather, T. A., Pyle, D. M., Raptakis, C., Paradissis, D., Hooper, A., Parsons, B. and Nomikou, P. (2015), From quiescence to unrest: 20 years of satellite geodetic measurements at Santorini volcano, Greece. Journal of Geophysical Research: Solid Earth, 120: 1309– 1328. doi: 10.1002/2014JB011540
Parotidis, M., Shapiro, S. A., Rothert, E., (2004). Back front of seismicity induced after termination of borehole fluid injection. Geophysical Research Letter, 31, L02612. https://doi.org/10.1029/2003GL018987
Perissoratis, C., Papadopoulos, G., (1999). Sediment instability and slumping in the southern Aegean Sea and the case history of the 1956 tsunami. Marine Geology, 161, 287–305. https://doi.org/10.1016/S0025-3227(99)00039-0
Piper, D. J. W., Perissoratis, C., (2003). Quaternary neotectonics of the South Aegean arc. Marine Geology, 198, 259-288, https://doi.org/10.1016/S0025-3227(03)00118-X
Podvin, P., Lecomte, I., (1991). Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools. Geophysical Journal International, 105, 271-284.
Pondrelli, S., Morelli, A., Ekström, G., Mazza, S., Boschi, E., Dziewonski, A. M., (2002). European-Mediterranean regional centroid-moment tensors: 1997-2000. Physics of the Earth and Planetary Interiors, 130, 71-101, https://doi.org/10.1016/j.pepi.2011.01.007
Ranjan, P., (2021). On the heterogeneous nature of the Aegean Lithosphere. Ph.D thesis. National Central University, Taoyuan.
Ranjan, P., Konstantinou, K. I., & Andinisari, R., (2019). Spatial distribution of random velocity inhomogeneities in the southern Aegean from inversion of S wave peak delay times. Journal of Geophysical Research: Solid Earth, 124, 10393-10412. https://doi.org/10.1029/2018JB017198
Ranjan, P., Konstantinou, K. I., (2020). Mapping intrinsic and scattering attenuation in the southern Aegean crust using S wave envelope inversion and sensitivity kernels derived from perturbation theory. Journal of Geophysical Research, Solid Earth, 125, e2020JB020821. https://doi.org/10.1029/2020JB020821
Reading, A., Kennett, B., and Sambridge, M., (2003). Improved inversion for seismic structure using transformed, S‐wavevector receiver functions: Removing the effect of the free surface. Geophysical Research Letter, 30, 1981, https://doi.org/10.1029/2003GL018090, 19
Reilinger, R., McClusky, S., Paradisis, D., Ergintav, S., Vernant, P., (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488, 22–30, https://doi.org/10.1016/j.tecto.2009.05.027
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al‐Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al‐Ghazzi, R., Karam, G., (2006). GPS constraints on continental deforma-tion in the Africa–Arabia–Eurasia continental collision zone and implications for thedynamics of plate interactions. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JB004051
Rizzo, A., Caracausi, A., Chavagnac, V., Nomikou, P., Polymenakou, P. N., Mandalakis, M., Kotoulas, G., Magoulas, A., Castillo, A., Lampridou, D., (2016). Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system. Scientific Reports, 6, 28013, https://doi.org/10.1038/srep28013
Rontogianni, S., (2010). Comparison of geodetic and seismic strain rates in Greece by using a uniform processing approach to campaign GPS measurements over the interval 1994–2000. Journal of Geodynamics, 50, 381–399, https://doi.org/10.1016/j.jog.2010.04.008
Sachpazi, M., Kontoes, Ch., Voulgaris, N., Laigle, M., Vougioukalakis, G., Sikioti, O., Stavrakakis, G., Baskoutas, J., Kalogeras, J., Lepine, J. Cl., (2002). Seismological and SAR signature of unrest at Nisyros caldera, Greece. Journal of Volcanology and Geothermal Research, 116, 19-33, https://doi.org/10.1016/S0377-0273(01)00334-1
Sakellariou, D., Sigurdsson, H., Alexandri, M., Carey, S., Rousakis, G., Nomikou, P., Georgiou, P., Ballas, D., (2010). Active tectonics in the Hellenic volcanic arc: The Kolumbo submarine volcanic zone. Bulletin of the Geological Society of Greece, 43(2), 1056-1063. https://doi.org/10.12681/bgsg.11270
Schmeling, H., (1985). Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part II: electrical conductivity. Physics of the Earth and Planetary Interiors, 43(2), 123-136, https://doi.org/10.1016/0031-9201(86)90080-4
Sibson, R. H., (1984). Roughness at the base of the seismogenic zone: Contributing factors, Journal of Geophysical Research, 89 (B7), 5791– 5799, doi:10.1029/JB089iB07p05791
Sodoudi, F., Kind, R., Hatzfeld, D., Priestley, K., Hanka, W., Wylegalla, K., Stavrakakis, G., Vafidis, A., Harjes, H.‐P., Bohnhoff, M., (2006). Lithospheric structure of the Aegean obtained from P and S receiver functions. Journal of Geophysical Research, 111, B12307, https://doi.org/10.1029/2005JB003932
Storchak, D. A., Di Giacomo, D., Bondár, I., Engdahl, E.R., Harris, J., Lee, W.H.K., Villaseñor, A., Bormann, P., (2013). Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009). Seismology Research Letter, 84, 5, 810-815, https://doi.org/10.1785/0220130034
Svenningsen, L., and Jacobsen, B. H., (2004). Comment on “Improved inversion for seismic structure using transformed, S‐wavevector receiver functions: Removing the effect of the free surface” by Anya Reading, Brian Kennett, and Malcolm Sambridge, Geophysical Research Letter, 31, L24609, https://doi.org/10.1029/2004GL021413
Tape, W., Tape, C., (2013). The classical model for moment tensors. Geophysical Journal International, 195(3), 1701–1720, https://doi.org/10.1093/gji/ggt302
Tarantola, A., Valette, B., (1982). Inverse problems = quest for information. Journal of Geophysical Research, 50, 159–170.
Tirel, C., Gueydan, F., Tiberi, C., Brun, J., (2004). Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth and Planetary Science Letter, 228, (3-4), 267-280, https://doi.org/10.1016/j.epsl.2004.10.023
Tur, H., Yaltırak, C., Elitez, İ., Sarıkavak, K.T., (2015). Pliocene-Quaternary tectonic evolution of the Gulf of Gökova, southwest Turkey. Tectonophysics, 638, 158-176, https://doi.org/10.1016/j.tecto.2014.11.008
van der Meijde, M., van der Lee, S., Giardini, D., (2003). Crustal structure beneath broad-band seimic stations in the Mediterranean region, Geophysical Journal International., 152, 729–739, https://doi.org/10.1046/j.1365-246X.2003.01871.x
VanDecar, J. C., Crosson, R. S., (1990). Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bulletin of the Seismological Society of America, 80(1), 150–169.
Vavryčuk, V., (2015). Moment tensor decompositions revisited. Journal of Seismology, 19, 231–252, https://doi.org/10.1007/s10950-014-9463-y
Vavryčuk, V., Bohnhoff, M., Jechumtálová, Z., Kolář, P., Šílený, J., (2008). Non-double-couple mechanisms of microearthquakes induced during the 2000 injection experiment at the KTB site, Germany: A result of tensile faulting or anisotropy of a rock? Tectonophysics, 456, 1–2, 74-93, https://doi.org/10.1016/j.tecto.2007.08.019
Waldhauser, F., (2001). HypoDD: A computer program to compute double-difference earthquake locations. USGS Open File Rep., 01-113, 2001.
Waldhauser, F., Ellsworth, W. L., (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bulletin of the Seismological Society of America, 90, 1353-1368, 2000, https://doi.org/10.1785/0120000006
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R., (2015), A new digital bathymetric model of the world′s oceans, Earth and Space Science, 2, 331– 345, doi:10.1002/2015EA000107
Wells, D. L., Coppersmith, K. J., (1994). New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 8, (4), 974-100.
指導教授 K. I. Konstantinou 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明