博碩士論文 105690609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:44.201.97.138
姓名 陳氏緣(Tran Thi Duyen)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 俄國西伯利亞古陸奧隆多(Olondo)綠岩帶起源及其地球動力學意義
(Origin and geodynamic implications of ultramafic-mafic-felsic rocks in the Olondo greenstone belt on the Siberian Craton in Russia)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 太古代Olondo綠岩帶 (greenstone belt; OGB) 出露於俄國西伯利亞古陸最大的基盤阿爾丹地盾(Aldan Shield)之上。相較於其他產於世界各地的綠岩帶,其基性-超基性岩成份比例約佔整體超過30%,為一研究當時地函成份一重要的題材。本研究進行一系列Olondo綠岩帶 超基性-基性-酸性岩石完整的的全岩地球化學元素與同位素分析,以期制約Olondo綠岩帶的起源以及其在太古代形成時可能的地球動力學機制。超基性純橄岩(dunite)的錸-鋨同位素的 TMA 模式年代為 2960-3020 百萬年,與之前報導的Olondo綠岩帶的30億年形成年代相當。超基性岩以新鮮和蛇紋石化的純橄岩為主,主要地化成分包括P-鉑族元素 (P-PGEs) 相對於 I-PGEs 的明顯虧損,表明其為歷經大程度部分融熔後的虧損殘餘地函岩石。純橄岩亦呈現 U形的稀土元素 (REE) 分配型式,在微量元素分配型式的蛛網圖中呈現具有從正到負鈮(Nb)異常,指示其源區地函曾受後期交代變質作用。與大多數太古代超基性岩石的堆晶(accumulate)岩起源不同,Olondo綠岩帶純橄岩是大程度部分熔融(>30%)後的殘餘地函岩石,隨後被與隱沒帶相關的熔體或流體交代變質而造成所具有的地化特徵。另一方面,包括科馬提岩和矽質玄武岩的Olondo綠岩帶基性岩石亦呈現相似於殘餘純橄岩的地球化學特徵,強化此Olondo綠岩帶超基性-基性岩石形成過程中涉及的隱沒帶相關作用,即便其他基性岩石的形成仍與現今中洋脊和地函柱等的構造環境相關。矽質玄武岩具有從輕稀土虧損、近似隕石原始值到富集(LREE)的稀土元素分佈型式,另具有不等程度的鈮-鉭(Ta)負異常,表明其與現今虧損中洋脊玄武岩(N-MORB)和玻安岩(boninite)的地化性質相似,和現今典型隱沒帶所發現的蛇綠岩相當。這種具有較低 εNd(t)和鈮-鉭負異常的元素特徵很可能是與隱沒成分混合的結果,與觀察到的殘餘純橄欖岩的鈮虧損一致。鋁虧損的科馬提質玄武岩可能起源於深部地函,由其虧損的重稀土元素得以證實,應該是在石榴子石穩定的溫壓狀態的深度(>70 km in depth)下,需憑藉地函柱將更深的地函輸送至淺部與熔融。在Olondo綠岩帶中所發現的安山岩全岩鎂質從44到52,部分安山岩鎂質含量甚高,鉻和鎳含量亦高。由這些中酸性岩可辨識出埃達克岩。其呈現輕稀土富集的稀土元素分佈型式,和在蛛網圖的鈮和鈦的負異常,其岩石地化特徵類似於新生代埃達克岩,為隱沒板塊熔融所形成。Olondo綠岩帶的超基性-基性岩可能是見證地函柱、中洋脊海底擴張和隱沒帶等活動在中太古代時期發生的地函柱誘發隱沒起始過程的記錄。Olondo綠岩帶與中太古代的其他綠岩帶相似,是在地函柱-隱沒帶作用共生的環境中形成的。這表明中太古代時期可能標誌著早期地球從地函柱為主的地體動力演化轉變成板塊構造體系的過渡階段。
摘要(英) The Archean Olondo greenstone belt (OGB) is located on the Aldan shield, the largest basement of the Siberia craton. With well-preserved abundant mafic-ultramafic rocks, ≥ 30% in volume, the OGB is unique among other greenstone belts in the world. In this study, Ipresent a comprehensive geochemical and isotopic data for the OGB rocks, in order to better constrain their origin and the geodynamic process involved in their formation in the Archean time. Rhenium-osmium isotopic data of the ultramafic rocks yield TMA model age of 29603020 Ma, comparable to the formation age of the OGB at 3 Ga. The ultramafic rocks vary from fresh to serpentinized dunites, which are highly refractory residual mantle rocks evidently indicated by depletion in P-Platinum Group Elements (PGE) relative to I-PGEs. Fresh dunites show U-shaped rare earth element (REE) patterns, with positive to negative Nb anomalies, indicative of metasomatic overprint. Unlike having a cumulate origin for most Archean ultramafic rocks, the OGB dunites were mantle residues after high degree of partial melting (>30%), subsequently metasomatized by the subduction-related melt/fluid. On the other hand, the OGB volcanic rocks including komatiitic and tholeiitic basalts show geochemical characteristics relative to the residual dunites, reinforcing subduction-related processes involved in some of their formation, despite extra mid-ocean ridge and plume activities associated with other mafic rocks. Tholeiitic basalts yield variable REE patterns from depleted, flat, to enriched light rare earth elements (LREE) patterns, with variable Nb-Ta anomalies, indicating their similarities with modern N-MORB and boninites, comparable to those found in typical supra-subduction zone (SSZ) ophiolites. Such elemental characteristics with combined lower εNd(t) and negative Nb-Ta anomalies are most likely a result of mixing with subducted components, consistent with the observed Nb depletion in the residual dunites. The Al-depleted komatiitic basalts may have originated from deep mantle source, corresponding to garnet stability field, confirmed by their depletion in HREE and requires a mantle plume to transport and melt at deeper depth. Additionally, the OGB has documented the occurrence of magnesian andesites, andesites, rhyolites, and Nb-enriched basalts. Magnesian andesites show high Mg# (52) with elevated Cr and Ni content. Andesite-rhyolite display LREE enriched patterns and negative Nb and Ti anomalies, similar to Cenozoic adakites. They could be generated by melting of subducted slab. Nb-enriched basalts (NEBs) exhibit elevated concentrations of Na2O, P2O5, TiO2, and high Nb contents (>6 ppm). They are characterized by LREE enrichment with negative Nb anomalies. They are most likely the result of mantle wedge metasomatized by Olondo adakitic magmas during magma ascent.
The OGB ultramafic-mafic rocks could be a record to witness plume-induced subduction initiation processes such that mantle plume, sea-floor spreading and subduction were all in operation in the Mesoarchean time. The subduction initiation was triggered by a mantle plume, which also provided higher thermal conditions for slab melting. The NEB-Mg andesite-adakites assemblage is evidence of a young, hot subduction process.
The OGB, as some other greenstone belts in Mesoarchean, was formed in a combined plume-arc setting. This suggests that the Mesoarchean time might mark the transition stage from dominantly plume to plate tectonic regime on the Earth.
關鍵字(中) ★ 綠岩帶
★ 火成岩地球化學
★ 同位素地球化學
★ 中始古代
關鍵字(英) ★ greenstone belt
★ Mesoarchean
★ igneous geochemistry
★ isotope geochemistry
論文目次 摘要 i
Abstract iii
Acknowledgements v
Table of contents 1
List of figures 5
List of tables 13
Chapter 1. Introduction 14
1.1. Studies of Archean greenstone belts: what is known and what is not 14
1.1.1. Greenstone belts: what are they? 14
1.1.2. What can greenstone belts tell us about the early Earth? 15
1.1.3. Evidences for and against operation of plate tectonics in the Archean from petrological and geochemical perspective 16
1.2. Previous work on the Olondo greenstone belt (OGB) and key issues 24
1.3. Scope and aims 25
Chapter 2. Geological background 27
2.1. The Siberian craton 27
2.2. The Aldan Shield 27
2.3. The Olekma granite–greenstone terrain (OGGT) 28
2.4. The Olondo greenstone belt (OGB) 29
Chapter 3. Analytical methods 34
3.1. Mineral chemistry 34
3.2. Whole-rock major and trace elemental analyses: 34
3.3. Sm-Nd isotopes analyses: 35
3.4. Whole-rock HSE and Re-Os isotope analyses: 37
3.5 Oxygen isotope analysis 40
Chapter 4. Results 41
4.1. Samples and petrography 41
4.2. Mineral chemistry 49
Olivine 49
Spinel 51
Serpentine 53
Chlorite 54
Amphibole and plagioclase 55
Plagioclase-hornblende geothermobarometry and chlorite geothermometry 58
4.3. Whole rock major and trace elements 59
Dunite, serpentinited dunite and serpentinite 62
Komatiite, komatiitic basalt, and olivine-carbonate-talc rocks 63
Tholeiites 67
Andesite – rhyolite - Nb-enriched basalt 70
4.4. PGE chemistry 73
Dunites-serpentinited dunites-serpentinites 73
Komatiite- komatiitic basalts and olivine-carbonate-talc rocks 74
Tholeiites 76
4.5. O, Re-Os isotope and Sm-Nd isotopes 76
Re-Os isotopes 76
Sm-Nd isotopes 77
Oxygen isotopes 77
Chapter 5. Discussion 95
5.1. Metamorphic condition and their effect to mineral chemistry 95
5.2. Effect of crustal contamination and alteration of the OGB rocks 98
5.2.1. Effects of alteration and crustal contamination 98
5.2.2. Effect of alteration and crustal contamination on O isotopic compositions 100
5.3. Age and origin of dunites and their tectonic significance 102
5.3.1. Major- and trace-elemental (including HSE) geochemical features 102
5.3.2. Re-Os isotopes 105
5.3.3. Mineral chemistry 109
5.4. Origin of komatiite-tholeiite-andesite-dacite assemblage and their tectonic significance 112
5.4.1. Komatiite and olivine-carbonate-talc rocks 112
5.4.2. Komatiitic and chondritic basalts 114
5.4.3. MORB-like basalts 116
5.4.4. Boninite-like basalst 116
5.4.5 Andesites, rhyolite and Nb-enriched basalt 118
5.5. Petrogenetic relationship and geodynamics for formation of the OGB 126
5.5.1 Petrogenetic relationship of different rock types in the Olondo complex 126
5.5.2 Geodynamics of the Olondo greenstone belt 127
Chapter 6. Conclusions 139
References 141
Appendix 164
參考文獻 Anhaeusser, C.R., 2014. Archaean greenstone belts and associated granitic rocks–a review. Journal of African Earth Sciences, 100, pp.684-732.
Arai, S., 1994a. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical Geology 113, 191-204.
Arai, S., 1994b. Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanology and Geothermal Research 59, 279-293.
Arndt, N., 2003. Komatiites, kimberlites, and boninites. Journal of Geophysical Research 108, 2293.
Arndt, N. T., Lesher, C. M., Barnes S. J, 2008. Komatiite. Cambridge: Cambridge University Press.
Aswad, K.J., Aziz, N.R., Koyi, H.A., 2011. Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological magazine 148, 802-818.
Ballhaus, C., Berry, R.F. and Green, D.H., 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107(1), pp.27-40.
Barley, M.E., 1986. Incompatible-element enrichment in Archean basalts: a consequence of contamination by older sialic crust rather than mantle heterogeneity. Geology, 14(11), pp.947-950.
Barnes S. J., Arndt N. T., 2019. Distribution and Geochemistry of Komatiites and Basalts through the Archean. In: Van Kranendonk M. J. , Bennett V. C. , Hoffmann E. (eds) Earth′s Oldest Rocks, 2nd edn. Elsevier, pp. 103–132.
Bebout, G.E. and Barton, M.D., 1989. Fluid flow and metasomatism in a subduction zone hydrothermal system: Catalina Schist terrane, California. Geology, 17(11), pp.976-980.
Becker, H., Shirey, S.B. and Carlson, R.W., 2001. Effects of melt percolation on the Re–Os systematics of peridotites from a Paleozoic convergent plate margin. Earth and Planetary Science Letters, 188(1-2), pp.107-121.
Bibikova, E.V., Kirnozova, T.I., Makarov, V.A., Drugova, G.M. and Bushmin, S.A., 1984. The Time of Volcanism in The Olondo Greenstone-Belt (East-Siberia). Doklady Akademii Nauk SSSR, 279(6), pp.1424-1428.
Bogomolova, L.M, 1993. Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy. Trofimuk Inst. Petrol. Geol. Geophys., Siberian Branch RAS, Novosibirsk (in Russian).
Braun, J.-J., Pagel, M., Herbilln, A., Rosin, C., 1993. Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: A mass balance study. Geochimica et Cosmochimica Acta 57, 4419-4434.
Brenner, A.R., Fu, R.R., Evans, D.A., Smirnov, A.V., Trubko, R. and Rose, I.R., 2020. Paleomagnetic evidence for modern-like plate motion velocities at 3.2 Ga. Science Advances, 6(17), p.eaaz8670.
Carlson, R.W., 2005. Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos, 82(3-4), pp.249-272.
Carlson, R.W., Pearson, D.G. and James, D.E., 2005. Physical, chemical, and chronological characteristics of continental mantle. Reviews of Geophysics, 43(1).
Castillo, P.R., 2008. Origin of the adakite–high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120(3-4), pp.451-462.
Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D. and Windley, B.F., 2009. Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318(1), pp.1-36.
Chu, Z., Yan, Y., Chen, Z., Guo, J., Yang, Y., Li, C. and Zhang, Y., 2015. A comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples. Geostandards and Geoanalytical Research, 39(2), pp.151-169.
Chung, S.L., Liu, D., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q. and Zhang, Q., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology, 31(11), pp.1021-1024.
Cloetingh, S., Koptev, A., Kovács, I., Gerya, T., Beniest, A., Willingshofer, E., Ehlers, T.A., Andrić‐Tomašević, N., Botsyun, S., Eizenhöfer, P.R. and François, T., 2021. Plume‐Induced Sinking of Intracontinental Lithospheric Mantle: An Overlooked Mechanism of Subduction Initiation?. Geochemistry, Geophysics, Geosystems, 22(2), p.e2020GC009482.
Coleman, R.G., 1977. What is an Ophiolite?. In Ophiolites (pp. 1-7). Springer, Berlin, Heidelberg.
Condie, K.C. and Pease, V. , 2008. When did plate tectonics begin on planet Earth? (Vol. 440). Geological Society of America.
Condie, K.C., 1976. Trace-element geochemistry of Archean greenstone belts. Earth-Science Reviews 12, 393-417.
Condie, K.C., 1981. Archean greenstone belts. Elsevier.
Condie, K.C., 2005. TTGs and adakites: are they both slab melts?. Lithos, 80(1-4), pp.33-44.
Condie, K.C., 2021. Earth as an evolving planetary system. Academic Press.
Creaser, R.A., Papanastassiou, D.A. and Wasserburg, G.J., 1991. Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochimica et Cosmochimica Acta, 55(1), pp.397-401.
de Sampaio, P.A.B., Neto, A.Soares, M.B., Alves, F.E.A., Fabricio-Silva,Silveira, V.D. and Gasparotto, W., 2022. The record of plume-arc interaction in the Southern São Francisco Craton–Insights from the Pitangui greenstone belt. Journal of South American Earth Sciences, 116, p.103857.
de Wit, M.J. and Ashwal, L.D., 1995. Greenstone belts: what are they?. South African Journal of Geology, 98(4), pp.505-520.
de Wit, M.J., 2004. Archean greenstone belts do contain fragments of ophiolites. Developments in Precambrian Geology 13, 599-614.
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. nature, 347(6294), pp.662-665.
Defant, M.J., Jackson, T.E., Drummond, M.D., De Boer, J.Z., Bellon, H., Feigenson, M.D., Maury, R.C. and Stewart, R.H., 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of the Geological Society, 149(4), pp.569-579.
Dewey, J.F. and Bird, J.M., 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. Journal of Geophysical Research, 76(14), pp.3179-3206.
Dey, S., Pal, S., Balakrishnan, S., Halla, J., Kurhila, M. and Heilimo, E., 2018. Both plume and arc: Origin of Neoarchaean crust as recorded in Veligallu greenstone belt, Dharwar craton, India. Precambrian Research, 314, pp.41-61.
Dhuime, B., Wuestefeld, A. and Hawkesworth, C.J., 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8(7), pp.552-555.
Dick, H.J., Bullen, T., 1984.Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54-76.
Dilek, Y. and Flower, M.F., 2003. Arc-trench rollback and forearc accretion: 2. A model template for ophiolites in Albania, Cyprus, and Oman. Geological Society, London, Special Publications, 218(1), pp.43-68.
Dilek, Y. and Newcomb, S., 2003. Ophiolite concept and its evolution. Special Papers-Geological Society of America, pp.1-16.
Dilek, Y. and Thy, P., 2009. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc–forearc magmatism in Tethyan subduction factories. Lithos, 113(1-2), pp.68-87.
Drummond, M., Defant, M., & Kepezhinskas, P. (1996). Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 87(1-2), 205-215. doi:10.1017/S0263593300006611
Eiler, J.M., 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Reviews in mineralogy and geochemistry, 43(1), pp.319-364.
Freer, W. and O′Reilly, R., 1980. The diffusion of Fe2+ ions in spinels with relevance to the process of maghemitization. Mineralogical Magazine, 43(331), pp.889-899.(10), pp.2112-2122.
Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H. and de Wit, M., 2004. Early life recorded in Archean pillow lavas. Science, 304(5670), pp.578-581.
Furnes, H., Rosing, M., Dilek, Y. and de Wit, M., 2009. Isua supracrustal belt (Greenland)—A vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology. Lithos, 113(1-2), pp.115-132.
Furnes, H., de Wit, M., Dilek, Y., 2014. Precambrian greenstone belts host different ophiolite types, Evolution of Archean Crust and Early Life. Springer, pp. 1-22.
Gamal El Dien, H., Arai, S., Doucet, L.S., Li, Z.X., Kil, Y., Fougerouse, D., Reddy, S.M., Saxey, D.W. and Hamdy, M., 2019. Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nature communications, 10(1), p.5103.
Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F. and Liu, Y.S., 2002. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198(3-4), pp.307-322.
Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C. and Wang, Q.H., 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019), pp.892-897.
Gao, L., Liu, S., Zhang, B., Sun, G., Hu, Y. and Guo, R., 2019. A ca. 2.8‐Ga plume‐induced intraoceanic arc system in the eastern North China craton. Tectonics, 38(5), pp.1694-1717.
Gao, P. and Santosh, M., 2020. Mesoarchean accretionary mélange and tectonic erosion in the Archean Dharwar Craton, southern India: Plate tectonics in the early Earth. Gondwana Research, 85, pp.291-305.
Garde, A.A., Windley, B.F., Kokfelt, T.F. and Keulen, N., 2020. Archaean plate tectonics in the North Atlantic craton of West Greenland revealed by well-exposed horizontal crustal tectonics, island arcs and tonalite-trondhjemite-granodiorite complexes. Frontiers in Earth Science, 8, p.540997.
Gast, P.W., 1968. Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochimica et Cosmochimica Acta, 32(10), pp.1057-1086.
Gerya, T.V., Stern, R.J., Baes, M., Sobolev, S.V. and Whattam, S.A., 2015. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577), pp.221-225.
Goldstein, S.J., Jacobsen, S.B., 1988. Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution. Earth and Planetary Science Letters 87, 249–265.
Grachev, A., Fedorovsky, V., 1981. On the nature of greenstone belts in the Precambrian. Developments in Geotectonics. Elsevier, pp. 195-212.
Green, D., Ringwood, A., 1967. The genesis of basaltic magmas. Contributions to Mineralogy and Petrology 15, 103-190.
Grocolas, T., Bouilhol, P., Caro, G. and Mojzsis, S.J., 2022. Eoarchean subduction-like magmatism recorded in 3750 Ma mafic–ultramafic rocks of the Ukaliq supracrustal belt (Québec). Contributions to Mineralogy and Petrology, 177(3), pp.1-27.
Grosch, E.G. and Slama, J., 2017. Evidence for 3.3-billion-year-old oceanic crust in the Barberton greenstone belt, South Africa. Geology, 45(8), pp.695-698.
Handler, M.R., Bennett, V.C. and Dreibus, G., 1999. Evidence from correlated Ir/Os and Cu/S for late-stage Os mobility in peridotite xenoliths: Implications for Re-Os systematics. Geology, 27(1), pp.75-78.
Hanmer, S. and Greene, D.C., 2002. A modern structural regime in the Paleoarchean (∼ 3.64 Ga); Isua greenstone belt, southern West Greenland. Tectonophysics, 346(3-4), pp.201-222.
Herzberg, C., 1995. Generation of plume magmas through time: an experimental perspective. Chemical Geology, 126(1), pp.1-16.
Hickey, R.L. and Frey, F.A., 1982. Geochemical characteristics of boninite series volcanics: implications for their source. Geochimica et Cosmochimica Acta, 46(11), pp.2099-2115.
Hiloidari, S., Satyanarayanan, M., Singh, S.P., Bhutani, R., Subramanyam, K.S.V. and Sarma, D.S., 2021. Evidence for Mesoarchean subduction in Southern Bundelkhand Craton, India: geochemical fingerprints from metavolcanics of Kurrat-Girar-Badwar Greenstone Belt. Geochemistry, 81(3), p.125787.
Hollings, P., Wyman, D. and Kerrich, R., 1999. Komatiite–basalt–rhyolite volcanic associations in Northern Superior Province greenstone belts: significance of plume-arc interaction in the generation of the proto continental Superior Province. Lithos, 46(1), pp.137-161.
Hollings, P. and Kerrich, R., 2000. An Archean arc basalt–Nb-enriched basalt–adakite association: the 2.7 Ga Confederation assemblage of the Birch–Uchi greenstone belt, Superior Province. Contributions to Mineralogy and Petrology, 139(2), pp.208-226.
Hyung, E. and Jacobsen, S.B., 2020. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Proceedings of the National Academy of Sciences, 117(26), pp.14738-14744.
Jacobsen, S.B. and Wasserburg, G.J., 1984. Sm-Nd isotopic evolution of chondrites and achondrites, II. Earth and Planetary Science Letters, 67(2), pp.137-150.
Jahn, B.M., Gruau, G. and Glikson, A.Y., 1982. Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contributions to Mineralogy and Petrology, 80(1), pp.25-40.
Jahn, B.-M., Gruau, G., Capdevila, R., Cornichet, J., Nemchin, A., Pidgeon, R., Rudnik, V., 1998. Archean crustal evolution of the Aldan Shield, Siberia: geochemical and isotopic constraints. Precambrian Research 91, 333-363.
Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N. and Reichow, M., 2009. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos, 113(3-4), pp.521-539.
Jenner, F.E., Bennett, V.C., Nutman, A.P., Friend, C.R.L., Norman, M.D. and Yaxley, G., 2009. Evidence for subduction at 3.8 Ga: geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt. Chemical Geology, 261(1-2), pp.83-98.
Jensen L.S. , Pyke D.R. 1982. Komatiites in the Ontario portion of the Abitibi belt. Komatiites, N.T. Arndt, E.G. Nisbet (Eds.), George Allen & Unwin, London (1982), pp. 147-157
Kepezhinskas, P., Defant, M.J. and Drummond, M.S., 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7), pp.1217-1229.
Kerrich, R., Wyman, D., Fan, J. and Bleeker, W., 1998. Boninite series: low Ti-tholeiite associations from the 2.7 Ga Abitibi greenstone belt. Earth and Planetary Science Letters, 164(1-2), pp.303-316.
Komiya, T., Yamamoto, S., Aoki, S., Sawaki, Y., Ishikawa, A., Tashiro, T., Koshida, K., Shimojo, M., Aoki, K. and Collerson, K.D., 2015. Geology of the Eoarchean,> 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics. Tectonophysics, 662, pp.40-66.
Korenaga, J., 2013. Initiation and evolution of plate tectonics on Earth: theories and observations. Annual review of earth and planetary sciences, 41, pp.117-151.
Kotov, A.B., 2003. Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (St. Petersburg State Univ., St. Petersburg, 2003).
Kovach, V.P., Kotov, A.B., Salnikova, E.B., Popov, N.V., Velikoslavinsky, S.D., Plotkina, J.V., Wang, K.-L., Fedoseenko, A.M., 2020. The upper age boundary of the formation of the Olondo fragment of the Tokko–Khani greenstone belt, Aldan Shield: U–Pb (ID-TIMS) geochronological data. Doklady Earth Sciences 494, 767-772.
Krull-Davatzes, A.E., Byerly, G.R. and Lowe, D.R., 2010. Evidence for a low-O2 Archean atmosphere from nickel-rich chrome spinels in 3.24 Ga impact spherules, Barberton greenstone belt, South Africa. Earth and Planetary Science Letters, 296(3-4), pp.319-328.
Kusky, T.M., Li, J.-H., Tucker, R.D., 2001. The Archean Dongwanzi ophiolite complex, North China Craton: 2.505-billion-year-old oceanic crust and mantle. Science 292, 1142-1145.
Kusky, T., Windley, B.F., Polat, A., Wang, L., Ning, W. and Zhong, Y., 2021. Archean dome-and-basin style structures form during growth and death of intraoceanic and continental margin arcs in accretionary orogens. Earth-Science Reviews, 220, p.103725.
Lagabrielle, Y., Guivel, C., Maury, R.C., Bourgois, J., Fourcade, S. and Martin, H., 2000. Magmatic–tectonic effects of high thermal regime at the site of active ridge subduction: the Chile Triple Junction model. Tectonophysics, 326(3-4), pp.255-268.
Lahaye, Y., Arndt, N., 1996. Alteration of a komatiite flow from Alexo, Ontario, Canada. Journal of Petrology 37, 1261_1284.
Lee, H.-Y., Chung, S.-L., Ji, J., Qian, Q., Gallet, S., Lo, C.-H., Lee, T.-Y., Zhang, Q., 2012. Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences 53, 96-114.
Liang, M.C. and Mahata, S., 2015. Oxygen anomaly in near surface carbon dioxide reveals deep stratospheric intrusion. Scientific Reports, 5(1), pp.1-9.
Lin, K.Y., Wang, K.L., Chung, S.L., Bingöl, A.F., Iizuka, Y. and Lee, H.Y., 2020. Tracking the magmatic response to subduction initiation in the forearc mantle wedge: Insights from peridotite geochemistry of the Guleman and Kızıldağ ophiolites, Southeastern Turkey. Lithos, 376, p.105737.
Liu, C.Z., Liu, Z.C., Wu, F.Y. and Chu, Z.Y., 2012. Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications: Geochemical and Re–Os isotopic results from Ningyuan mantle xenoliths. Chemical Geology, 291, pp.186-198.
Lowry, D., Appel, P.W.U. and Rollinson, H.R., 2003. Oxygen isotopes of an early Archaean layered ultramafic body, southern West Greenland: implications for magma source and post-intrusion history. Precambrian Research, 126(3-4), pp.273-288.
Luguet, A., Graham Pearson, D., Nowell, G.M., Dreher, S.T., Coggon, J.A., Spetsius, Z.V. and Parman, S.W., 2008. Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science, 319(5862), pp.453-456.
Macpherson, C.G., Chiang, K.K., Hall, R., Nowell, G.M., Castillo, P.R. and Thirlwall, M.F., 2010. Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna peninsula, Sabah, Borneo: Implications for high-Nb basalt in subduction zones. Journal of Volcanology and Geothermal Research, 190(1-2), pp.25-38.
Macpherson, C.G., Dreher, S.T. and Thirlwall, M.F., 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4), pp.581-593.
Maekawa, H., Shozul, M., Fryer, P. and Pearce, J.A., 1993. Blueschist metamorphism in an active subduction zone. Nature, 364(6437), pp.520-523.
Manikyamba, C., Kerrich, R., Khanna, T.C. and Subba Rao, D.V., 2007. Geochemistry of adakites and rhyolites from the Neoarchaean Gadwal greenstone belt, eastern Dharwar craton, India: implications for sources and geodynamic setting. Canadian Journal of Earth Sciences, 44(11), pp.1517-1535.
Manikyamba, C., Kerrich, R., Khanna, T.C., Krishna, A.K. and Satyanarayanan, M., 2008. Geochemical systematics of komatiite–tholeiite and adakitic-arc basalt associations: The role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar craton, India. Lithos, 106(1-2), pp.155-172.
Manya, S., Maboko, M.A. and Nakamura, E., 2007. The geochemistry of high-Mg andesite and associated adakitic rocks in the Musoma-Mara Greenstone Belt, northern Tanzania: possible evidence for Neoarchaean ridge subduction?. Precambrian Research, 159(3-4), pp.241-259.
Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3), pp.411-429.
Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F. and Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79(1-2), pp.1-24.
Maruyama, S., Liou, J.G. and Terabayashi, M., 1996. Blueschists and eclogites of the world and their exhumation. International geology review, 38(6), pp.485-594.
McCarron, J.J. and Smellie, J.L., 1998. Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites: Alexander Island, Antarctica. Journal of the Geological Society, 155(2), pp.269-280.
McIntyre, T., Pearson, D., Szilas, K., Morishita, T., 2019. Implications for the origins of Eoarchean ultramafic rocks of the North Atlantic Craton: a study of the Tussaap Ultramafic complex, Itsaq Gneiss complex, southern West Greenland. Contributions to Mineralogy and Petrology 174, 96.
Moyen, J.-F., Laurent, O., 2018. Archaean tectonic systems: a view from igneous rocks. Lithos 302, 99-125.
Murton, B.J., Peate, D.W., Arculus, R.J., Pearce, J.A. and Van der Laan, S., 1992. 12. Trace-Element Geochemistry Of Volcanic Rocks From Site 786: The Izu-Bonin Forearc1. In Proceedings of the Ocean Drilling Program, scientific results (Vol. 125, pp. 211-235).
Nabhan, S., Luber, T., Scheffler, F. and Heubeck, C., 2016. Climatic and geochemical implications of Archean pedogenic gypsum in the Moodies group (∼ 3.2 Ga), Barberton Greenstone Belt, South Africa. Precambrian Research, 275, pp.119-134.
Næraa, T., Scherstén, A., Rosing, M.T., Kemp, A., Hoffmann, J., Kokfelt, T., Whitehouse, M., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627-630.
Naqvi, S.M., Khan, R.M.K., Manikyamba, C., Mohan, M.R. and Khanna, T.C., 2006. Geochemistry of the NeoArchaean high-Mg basalts, boninites and adakites from the Kushtagi–Hungund greenstone belt of the Eastern Dharwar Craton (EDC); implications for the tectonic setting. Journal of Asian Earth Sciences, 27(1), pp.25-44.
Nesbitt, R. W., Sun S., Purvis A. C., 1979. Komatiites: geochemistry and genesis. Canadian Mineralogist 17, 165 – 186 .
Neymark, L.A., Kovach, V.P., Nemchin, A.A., Morozova, I.M., Kotov, A.B., Vinogradov, D.P., Gorokhovsky, B.M., Ovchinnikova, G.V., Bogomolova, L.M., Smelov, A.P., 1993. Late Archaean intrusive complexes in Olekma granite-greenstone terrain (Eastern Siberia): geochemical and isotopic study. Precambrian Research 62, 453–472.
Nisbet, E.G., Cheadle, M.J., Arndt, N.T. and Bickle, M.J., 1993. Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos, 30(3-4), pp.291-307.
Nutman, A.P. and Friend, C.R., 2009. New 1: 20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: a glimpse of Eoarchaean crust formation and orogeny. Precambrian Research, 172(3-4), pp.189-211.
Nutman, A.P., Chenyshev, I.V., Baadsgaard, H., Smelov, A.P., 1992. The Aldan Shield of Siberia, USSR: the age of its Archaean components and evidence for widespread reworking in the mid-Proterozoic. Precambrian Research 54, 195-210.
Nutman, A.P., Bennett, V.C., Friend, C.R. and Yi, K., 2020. Eoarchean contrasting ultra-high-pressure to low-pressure metamorphisms (< 250 to> 1000° C/GPa) explained by tectonic plate convergence in deep time. Precambrian Research, 344, p.105770.
Nutman, A.P., Bennett, V.C., Friend, C.R., Polat, A., Hoffmann, E., Van Kranendonk, M.,2021a. Fifty years of the Eoarchean and the case for evolving uniformitarianism. Precambrian Res. 367, 106442.
Nutman, A.P., Scicchitano, M.R., Friend, C.R., Bennett, V.C. and Chivas, A.R., 2021b. Isua (Greenland)~ 3700 Ma meta-serpentinite olivine Mg# and δ18O signatures show connection between the early mantle and hydrosphere: Geodynamic implications. Precambrian Research, 361, p.106249.
Palin, R.M. and White, R.W., 2016. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nature Geoscience, 9(1), pp.60-64.
Parfenov, L.M., 1991. Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics. Tectonophysics, 199(2-4), pp.319-342.
Parkinson, I.J. and Pearce, J.A., 1998. Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9), pp.1577-1618.
Peacock, S.M., 1993. The importance of blueschist→ eclogite dehydration reactions in subducting oceanic crust. Geological Society of America Bulletin, 105(5), pp.684-694.
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 14-48.
Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J. and Leat, P.T., 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc–basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1), pp.36-53.
Pearson, D.G., 1999. The age of continental roots. Lithos, 48(1-4), pp.171-194.
Pearson, D.G., Parman, S.W. and Nowell, G.M., 2007. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature, 449(7159), pp.202-205.
Pernet-Fisher, J.F., Howarth, G.H., Liu, Y., Barry, P.H., Carmody, L., Valley, J.W., Bodnar, R.J., Spetsius, Z.V. and Taylor, L.A., 2014. Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contributions to Mineralogy and Petrology, 167, pp.1-17.
Perring, C.S., Barnes, S.J. and Hill, R.E.T., 1996. Geochemistry of komatiites from Forrestania, Southern Cross Province, Western Australia: evidence for crustal contamination. Lithos, 37(2-3), pp.181-197.
Petrone, C.M. and Ferrari, L., 2008. Quaternary adakite—Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence?. Contributions to Mineralogy and Petrology, 156, pp.73-86.
Polat, A. and Kerrich, R., 2000. Archean greenstone belt magmatism and the continental growth–mantle evolution connection: constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth and Planetary Science Letters, 175(1-2), pp.41-54.
Polat, A. and Kerrich, R., 2001. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141(1), pp.36-52.
Polat, A. and Kerrich, R., 2002. Nd-isotope systematics of∼ 2.7 Ga adakites, magnesian andesites, and arc basalts, Superior Province: evidence for shallow crustal recycling at Archean subduction zones. Earth and Planetary Science Letters, 202(2), pp.345-360.
Polat, A. and Longstaffe, F.J., 2014. A juvenile oceanic island arc origin for the Archean (ca. 2.97 Ga) Fiskenæsset anorthosite complex, southwestern Greenland: evidence from oxygen isotopes. Earth and Planetary Science Letters, 396, pp.252-266.
Polat, A., Appel, P.W., Fryer, B.J., 2011. An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Research 20, 255-283.
Polat, A., Hofmann, A., 2003. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research 126, 197-218.
Polat, A., Hofmann, A., Rosing, M.T., 2002. Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology 184, 231-254.
Popov, N.V., Smelov, A.P., Dobretsov, N.N., Bogomolova, L.M., Kartavchenko, V.G., 1990. The Olondo Greenstone Belt [in Russian]. Izd.Yakutskogo Nauchnogo Tsentra SO AN SSSR, Yakutsk.
Popov, N., Dobretsov, N., Smelov, A., Bogomolova, L., 1995. Tectonics, metamorphism, and the problems of evolution of the Olondo greenstone belt. Petrology 3, 73-86.
Puchtel, I., Zhuravlev, D., 1993. Petrology of mafic-ultramafic metavolcanics and related rocks from the Olondo greenstone belt, Aldan Shield. Petrology 1, 263-299.
Puchtel, I.S., 2004. 3.0 Ga Olondo greenstone belt in the Aldan shield, E. Siberia. Developments in Precambrian Geology 13, 405-423.
Puchtel, I.S., Samsonov, A.V., Simon, A.R., Zhuravlev, D.Z., 1989. Petrology, geochemistry and Sm-Nd age of metavolcanics from the Olondo greenstone belt. In: Dook, V.L., Neymark, L.A., Rudnik, V.A. (Eds.). The oldest rocks of the Aldan-Stanovik Shield, Eastern Siberia, USSR. Excursion guide for geological field trip to the Aldan-Stanovik Shield, July-August 1989. IGCP Project 280. Leningrad, Sevmorgeologiya. 1989. P. 27–35.
Puchtel, I.S., Frikh-Khar, D.I., Ashikhmina, N.A., Tomashpolskiy, Yw.Ya., Shirina, N.G., 1991. Metamorphic olivines in ultrabasites of Olondin greenstone belt and the problem of identification of komatitites (Aldan Shield). Int. Geol. Rev. 33, 161–173.
Puchtel, I.S., Bogatikov, O.A., Simon, A.K., 1993. The Early Precambrian crust-mantle evolution of the Olekma gneiss-greenstone terrane, Aldan Shield. Petrology 1, 451–473.
Puchtel, I.S., Hofmann, A.W., Amelin, Y.V., Garbe-Schönberg, C.D., Samsonov, A.V. and Shchipansky, A.A., 1999. Combined mantle plume-island arc model for the formation of the 2.9 Ga Sumozero-Kenozero greenstone belt, SE Baltic Shield: Isotope and trace element constraints. Geochimica et cosmochimica acta, 63(21), pp.3579-3595.
Putlitz, B., Matthews, A. and Valley, J.W., 2000. Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust. Contributions to Mineralogy and Petrology, 138(2), pp.114-126.
Reisberg, L., Zhi, X., Lorand, J.P., Wagner, C., Peng, Z. and Zimmermann, C., 2005. Re–Os and S systematics of spinel peridotite xenoliths from east central China: evidence for contrasting effects of melt percolation. Earth and Planetary Science Letters, 239(3-4), pp.286-308.
Reubi, O. and Blundy, J., 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461(7268), pp.1269-1273.
Ringwood A., E. Major A., 1971. Synthesis of majorite and other high pressure garnets and perovskites. Earth and Planetary Science Letters 12, 411 – 418.
Robin-Popieul, C.C., Arndt, N.T., Chauvel, C., Byerly, G.R., Sobolev, A.V. and Wilson, A., 2012. A new model for Barberton komatiites: deep critical melting with high melt retention. Journal of Petrology, 53(11), pp. 2191-2229.
Rollinson, H.R., 2009. Early Earth systems: a geochemical approach. John Wiley & Sons.
Rosen, O.M., Turkina, O.M., 2007. The oldest rock assemblages of the Siberian Craton. Developments in Precambrian Geology 15, 793-838.
Rudnick, R.L. and Walker, R.J., 2009. Interpreting ages from Re–Os isotopes in peridotites. Lithos, 112, pp.1083-1095.
Rundqvist, D.V. and Mitrofanov, F.P. eds., 1993. Precambrian Geology of the USSR. Elsevier.
Saha, D., Bachhar, P., Deb, G.K., Patranabis-Deb, S. and Banerjee, A., 2021. Tectonic evolution of the Paleoarchean to Mesoarchean Badampahar-Gorumahisani belt, Singhbhum craton, India–Implications for coexisting arc and plume signatures in a granite-greenstone terrain. Precambrian Research, 357, p.106094.
Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J., Defant, M.J. and Pubellier, M., 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11), pp.1007-1010.
Sajona, F.G., Maury, R.C., Bellon, H., Cotten, J. and Defant, M., 1996. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of petrology, 37(3), pp.693-726.
Salnikova, E.B., Kovach, V.P., Kotov, A.B., Nemchin, A.A., 1996. Evolution of continental crust in the Western Aldan Shield: evidence from Sm–Nd systematics of granitoids. Petrology 4, 105-118.
Scott, D.J., St-Onge, M.R., Lucas, S.B. and Helmstaedt, H., 1991. Geology and chemistry of the early Proterozoic Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere: Proceedings of the Ophiolite Conference, held in Muscat, Oman, 7–18 January 1990 (pp. 817-849). Springer Netherlands.
Scott, D.J., Helmstaedt, H. and Bickle, M.J., 1992. Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada: A reconstructed section of Early Proterozoic oceanic crust. Geology, 20(2), pp.173-176.
Shi, R., Alard, O., Zhi, X., O′Reilly, S.Y., Pearson, N.J., Griffin, W.L., Zhang, M. and Chen, X., 2007. Multiple events in the Neo-Tethyan oceanic upper mantle: evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 261(1-2), pp.33-48.
Shirey, S.B., Walker, R.J., 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences 26, 423-500.
Singh, S.P., Subramanyam, K.S.V., Manikyamba, C., Santosh, M., Singh, M.R. and Kumar, B.C., 2018. Geochemical systematics of the Mauranipur-Babina greenstone belt, Bundelkhand Craton, Central India: insights on Neoarchean mantle plume-arc accretion and crustal evolution. Geoscience Frontiers, 9(3), pp.769-788.
Slabunov, А.I. and Singh, V.K., 2019. Meso–Neoarchaean crustal evolution of the Bundelkhand Craton, Indian Shield: new data from greenstone belts. International Geology Review, 61(11), pp.1409-1428.
Smelov, A., Shatsky, V., Ragozin, A., Reutskii, V., Molotkov, A., 2012. Diamondiferous Archean rocks of the Olondo greenstone belt (western Aldan–Stanovoy shield). Russian Geology and Geophysics 53, 1012-1022.
Smith, A., Ludden, J., 1989. Nd isotopic evolution of the Precambrian mantle. Earth and Planetary Science Letters 93, 14-22.
Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., Howard, H.M. and Hickman, A.H., 2005. Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth and Planetary Science Letters, 231(3-4), pp.221-237.
Smoliar, M.I., Walker, R.J. and Morgan, J.W., 1996. Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science, 271(5252), pp.1099-1102.
Sotiriou, P., Polat, A., Windley, B.F. and Kusky, T., 2022. Temporal variations in the incompatible trace element systematics of Archean volcanic rocks: Implications for tectonic processes in the early Earth. Precambrian Research, 368, p.106487.
Sproule, R.A., Lesher, C.M., Ayer, J.A., Thurston, P.C. and Herzberg, C.T., 2002. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt. Precambrian research, 115(1-4), pp.153-186.
Stern, C.R. and Kilian, R., 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to mineralogy and petrology, 123, pp.263-281.
Stern, R.J., 2005. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology, 33(7), pp.557-560.
Stern, R.J., 2018. The evolution of plate tectonics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132), p.20170406.
Sun, S.-S., Nesbitt, R.W., 1978. Geochemical regularities and genetic significance of ophiolitic basalts. Geology 6, 689-693.
Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42, 313-345.
Szilas, K., van Hinsberg, V., McDonald, I., Næraa, T., Rollinson, H., Adetunji, J., Bird, D., 2018. Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland. Geoscience Frontiers 9, 689-714.
Tourpin, S., Gruau, G., Blais, S. and Fourcade, S., 1991. Resetting of REE, and Nd and Sr isotopes during carbonitization of a komatiite flow from Finland. Chemical geology, 90(1-2), pp.15-29.
Turner, S., Wilde, S., Wörner, G., Schaefer, B. and Lai, Y.J., 2020. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nature Communications, 11(1), p.1241.
Valley, J.W., Peck, W.H., King, E.M. and Wilde, S.A., 2002. A cool early Earth. Geology, 30(4), pp.351-354.
Velikoslavinskii, S.D., Kotov, A.B., Salnikova, E.B., Kuznetsov, A.B., Kovach, V.P., Popov, N.V., Tolmacheva, E.V., Anisimova, I.V., Plotkina, Yu.V., 2018. New data on the age of the tonalite–trondhjemite orthogneisses of the Olekma Complex of the central part of the Chara–Olekma geoblock, Aldan Shield. Doklady Earth Sciences 482, 1265-1269.
Villa, I.M., Holden, N.E., Possolo, A., Ickert, R.B., Hibbert, D.B., Renne, P.R., 2020. IUPAC-IUGS recommendation on the half-lives of 147Sm and 146Sm. Geochimica et Cosmochimica Acta 285, 70-77.
Vogt, K., Dohmen, R. and Chakraborty, S., 2015. Fe-Mg diffusion in spinel: New experimental data and a point defect model. American Mineralogist, 100(10), pp.2112-2122.
Völkening, J., Walczyk, T. and Heumann, K.G., 1991. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 105(2), pp.147-159.
Walker, R.J., Shirey, S.B., Hanson, G.N., Rajamani, V. and Horan, M.F., 1989. Re-Os, Rb-Sr, and O isotopic systematics of the Archean Kolar schist belt, Karnataka, India. Geochimica et Cosmochimica Acta, 53(11), pp.3005-3013.
Walker, R.J., Prichard, H.M., Ishiwatari, A. and Pimentel, M., 2002a. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochimica et Cosmochimica Acta, 66(2), pp.329-345.
Walker, R.J., Horan, M.F., Morgan, J.W., Becker, H., Grossman, J.N. and Rubin, A.E., 2002b. Comparative 187Re-187Os systematics of chondrites: Implications regarding early solar system processes. Geochimica et Cosmochimica Acta, 66(23), pp.4187-4201.
Walter, M. 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, pp. 29 – 60.
Wang, Q., Wyman, D.A., Xu, J., Wan, Y., Li, C., Zi, F., Jiang, Z., Qiu, H., Chu, Z., Zhao, Z. and Dong, Y., 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155, pp.473-490.
Whattam, S.A. and Stern, R.J., 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1), pp.38-63.
Winchester, J., Floyd, P., 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28, 459-469.
Windley, B.F., Kusky, T. and Polat, A., 2021. Onset of plate tectonics by the Eoarchean. Precambrian Research, 352, p.105980.
Workman, R.K. and Hart, S.R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2), pp.53-72.
Wyman, D.A., Ayer, J.A. and Devaney, J.R., 2000. Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters, 179(1), pp.21-30.
Xu, J.F., Shinjo, R., Defant, M.J., Wang, Q. and Rapp, R.P., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of East China: partial melting of delaminated lower continental crust?. Geology, 30(12), pp.1111-1114.
Yuan, H., Gao, S., Rudnick, R.L., Jin, Z., Liu, Y., Puchtel, I.S., Walker, R.J. and Yu, R., 2007. Re–Os evidence for the age and origin of peridotites from the Dabie–Sulu ultrahigh pressure metamorphic belt, China. Chemical Geology, 236(3-4), pp.323-338.
Zhai, M., Yang, J., Fan, H., Miao, L. and Li, Y., 2002. A large-scale cluster of gold deposits and metallogenesis in the eastern North China craton. International Geology Review, 44(5), pp.458-476.
Zonenshain, L.P., 1990. Geology of the USSR: a plate-tectonic synthesis. Geodynamics series, 21, p.120.
指導教授 王國龍 郭力維(Kuo-Lung, Wang Li-Wei, Kuo) 審核日期 2023-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明