博碩士論文 105821001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.14.141.228
姓名 詹彩芸(Tsai-Yun Chan)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 天然和合成化合物調節前脂肪細胞分化成脂肪細胞
(Natural and synthetic compunds regulate the differentiation of preadipocytes to adipocytes)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 肥胖症是世界上常見的疾病,它增加了許多和代謝症候群相關疾病的風險,例如糖尿病,高血壓和心血管疾病。肥胖症的特徵是增加脂肪細胞的大小與數量,即分化與有絲分裂。由於白色脂肪細胞儲存過多能量,有利於肥胖的發展,而米色和棕色脂肪細胞消耗能量產生熱能,這有利於對抗肥胖,本篇論文的目的是研究來自檳榔或綠茶或丹蔘的天然和合成化合物對脂肪細胞分化的影響。使用3T3-L1白色脂肪細胞,我們發現檳榔鹼Arecoline,但不是Arecaidine或Guvacine,在12天分化期間處理100 μM抑制前脂肪細胞分化成脂肪細胞,從三酸甘油脂的累積減少所示。這表明檳榔對白色脂肪細胞的脂肪生成有生物鹼特異性作用。使用X9、D12和D16米色脂肪細胞,我們發現50 μM的綠茶表沒食子兒茶素沒食子酸酯(EGCG)傾向於減少8天分化過程中的細胞數和三酸甘油脂積累,而D12細胞對EGCG的反應比其他兩種米色脂肪細胞類型更敏感。這表明EGCG對米色脂肪細胞有細胞類型依賴性作用。使用HIB1B棕色脂肪細胞,我們發現EGCG、表兒茶素沒食子酸酯(ECG)、表沒食子兒茶素(EGC)和沒食子酸(Gallic acid),而不是表兒茶素(EC),可以在分化8天期間減少細胞數量和三酸甘油脂的積累,並且EGCG比其他綠茶兒茶素更有效。這表明兒茶素的特異性作用。此外,天然丹蔘二萜,如二氫丹蔘酮I(Dihydrotanshinone I,DHT-I),隱丹蔘酮(Cryptotanshinone)和丹蔘酮IIA(Tanshinone IIA),在HIB1B細胞分化過程中劑量依賴性的抑制細胞數和三酸甘油脂積累,而DHT-I比其他兩種化合物更有效。這表明丹蔘二萜的類型依賴性作用。合成的丹蔘化合物,例如化合物4、5和6,它們在處理10和50 μM後會抑制三酸甘油脂積累,並且前兩種化合物比最後一種化合物更有效。而根據濃度,在HIB1B棕色脂肪細胞中發現化合物4、5和6,改變脂肪細胞分化標記基因:脂肪細胞蛋白-2(adipocyte protein-2)、脂聯素(adiponectin)、PR domain containing (PRDM)-16、抵抗素(resistin)和解偶聯蛋白-1(uncoupling protein-1)的表達。總之,這些數據表明草藥化合物對脂肪細胞分化的影響隨處理劑量、天然和合成化合物的化學結構、脂肪形成基因和使用脂肪細胞系的類型而改變,並且提供兒茶素、檳榔生物鹼和丹蔘二萜類化合物用於預防和治療脂肪細胞相關疾病的可能性。
摘要(英) Obesity is a common disease in the world and increases the risk of many metabolic syndrome related diseases, such as diabetes, hypertension, and cardiovascular disease. It is characterized by increased sizes and numbers of adipocytes so-called differentiation and mitogenesis. As white adipocytes store too much energy, which favors development of obesity, and beige and brown adipocytes consume energy to produce heat, which favors anti-obesity, the overall objective of this thesis was designed to investigate the effects of natural and synthetic compounds derived from betel nuts, green tea, or danshen on adipogenic differentiation of fat cells. Using 3T3-L1 white fat cells, we discovered that betel nut arecoline, but not arecaidine or quvacine, inhibited the 12-day differentiation of preadipocytes into adipocytes after 100 μM of treatment, as indicated by reduced triglyceride accumulation. This suggests the alkaloid-specific effect of betel nut on white fat cell adipogenesis. Using X9, D12, and D16 beige fat cells, we discovered that green tea epigallocatechin-3-gallate (EGCG) at 50 μM tended to reduce the number of cells and triglyceride accumulation during the 8-day differentiation and that D12 cells were more sensitive to respond to EGCG than other two fat cell types. This suggests beige cell type-dependent effect of EGCG. Using HIB1B brown fat cells, we discovered that EGCG, epicatechin gallate, epigallocatechin, gallic acid, but not epicatechin, could reduce the number of cells and triglyceride accumulation during the 8-day period of differentiation and that EGCG was more effective than other tea catechins. This indicates the catechin-specific effect. In addition, native danshen diterpenoids, such as dihydrotanshinone I (DHT-I), cryptotanshinone, and tanshinone IIA, were found to dose-dependently inhibit cell number and triglyceride accumulation during HIB1B cell differentiation and DHT-I was more effective than other two compounds. This indicates diterpenoid type-dependent effect of danshen. When synthetic danshen compounds, such as compounds 4, 5, and 6, were examined, they could inhibit triglyceride accumulation after 10 and 50 μM of treatment and the former two compounds were more effective than the last one compound. Moreover, depending on the concentrations, compounds 4, 5, and 6 were found in HIB1B brown fat cells to differentially alter the expressions of adipogenic differentiation marker genes, adipocyte protein (aP)-2, adiponectin, PR domain containing (PRDM)-16, resistin, and uncoupling protein (Ucp)-1. Taken together, these data suggest that the effect of the herbal compounds on the differentiation of fat cells varies with doses of treatment, chemical structures of native and synthetic compounds, adipogenic genes, and types of fat cell lines used, as well as may provide possible uses of tea catechin, betel nut alkaloid, and danshen diterpenoid for prevention and cure of fat cell-related diseases.
關鍵字(中) ★ 兒茶素
★ 檳榔鹼
★ 丹蔘
★ 脂肪細胞
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vi
縮寫與全名對照表 vii
壹、前言 1
一、 肥胖症 1
二、 脂肪細胞 1
三、 檳榔鹼 2
四、 檳榔鹼與白色脂肪之關係 3
五、 綠茶兒茶素與酚酸類 3
六、 綠茶可以抗肥胖 3
七、 丹蔘 4
八、 丹蔘與肥胖之關係 4
九、 研究動機與目的 5
貳、材料與方法 6
一、 實驗材料 6
二、 實驗方法 6
參、實驗結果 12
一、 3T3-L1白色脂肪細胞分化過程之建立 12
二、 X9、D12、D16米色脂肪細胞分化過程之建立 12
三、 HIB1B棕色脂肪細胞分化過程之建立 12
四、 檳榔鹼影響3T3-L1白色脂肪細胞的分化 13
五、 綠茶兒茶素EGCG影響米色脂肪細胞的分化 13
六、 綠茶兒茶素影響HIB1B棕色脂肪細胞的分化 14
七、 天然丹蔘化合物影響HIB1B棕色脂肪細胞的分化 15
八、 合成的丹蔘衍生化合物影響HIB1B棕色脂肪細胞的分化 15
肆、討論 17
一、 不同檳榔鹼對3T3-L1白色脂肪細胞分化的影響 17
二、 綠茶兒茶素EGCG對三種不同米色脂肪細胞分化的影響 17
三、 不同綠茶兒茶素對HIB1B棕色脂肪細胞分化的影響 19
四、 不同天然丹蔘化合物對HIB1B棕色脂肪細胞分化的影響 19
五、 不同合成丹蔘衍生物對HIB1B棕色脂肪細胞分化的影響 20
伍、結論 22
陸、參考文獻 24
柒、附錄 54
參考文獻 1. Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA. (2007) C/EBPβ Reprograms White 3T3-L1 Preadipocytes to a Brown Adipocyte Pattern of Gene Expression. J Biol Chem. 282: 24660-24669.
2. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH. (2009) Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol. 297: C121-C132.
3. Liu CW, Yang SY, Lin CK, Liu HS, Ho LT, Wu LY, Lee MJ, Ku HC, Chang HH, Huang RN, Kao YH. (2014) The forkhead transcription factor FOXO1 stimulates the expression of the adipocyte resistin gene. Gen Comp Endocrinol. 196: 41-51.
4. Chomczynski P, Sacchi N. (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 1: 581-585.
5. Mi Y, Liu X, Tian H, Liu H, Li J, Qi G, Liu X. (2018) EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-α-triggered insulin resistance in adipocytes. Food Funct. 9: 3374-3386.
6. Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. (2017) A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J Nutr Biochem. 49: 15-21.
7. Rahman N, Jeon M, Song HY, Kim YS. (2016) Cryptotanshinone, a compound of Salvia miltiorrhiza inhibits pre-adipocytes differentiation by regulation of adipogenesis-related genes expression via STAT3 signaling. Phytomedicine. 23: 58-67.
8. Gong Z, Huang C, Sheng X, Zhang Y, Li Q, Wang MW, Peng L, Zang YQ. (2009) The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism. Endocrinology. 150: 104-113.
9. Hsieh TJ, Hsieh PC, Wu MT, Chang WC, Hsiao PJ, Lin KD, Chou PC, Shin SJ. (2011) Betel nut extract and arecoline block insulin signaling and lipid storage in 3T3-L1 adipocytes. Cell Biol Toxicol. 27: 397-411.
10. Choo JJ. (2003) Green tea reduces body fat accretion caused by high-fat diet in rats through beta-adrenoceptor activation of thermogenesis in brown adipose tissue. J Nutr Biochem. 14: 671-676.
11. Serafini M, Ghiselli A, Ferro-Luzzi A. (1996) In vivo antioxidant effect of green and black tea in man. Eur J Clin Nutr. 50: 28-32.
12. Tang J, Zheng JS, Fang L, Jin Y, Cai W, Li D. (2015) Tea consumption and mortality of all cancers, CVD and all causes: a meta-analysis of eighteen prospective cohort studies. Br J Nutr. 114: 673-683.
13. Yousaf S, Butt MS, Suleria HA, Iqbal MJ. (2014) The role of green tea extract and powder in mitigating metabolic syndromes with special reference to hyperglycemia and hypercholesterolemia. Food Funct. 5: 545-556.
14. Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I. (2002) Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord. 26: 1459-1464.
15. Hasegawa N, Yamda N, Mori M. (2003) Powdered green tea has antilipogenic effect on Zucker rats fed a high-fat diet. Phytother Res. 17: 477-480.
16. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H. (2004) Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci Biotechnol Biochem. 68: 2353-2359.
17. Nagle DG, Ferreira D, Zhou YD. (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry. 67: 1849-1855.
18. Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ, Kao YH. (2005) Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol. 288: C1094-108.
19. Ji X, Tan BK, Zhu YC, Linz W, Zhu YZ. (2003) Comparison of cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats. Life Sci. 73: 1413-1426.
20. Sun J, Huang SH, Tan BK, Whiteman M, Zhu YC, Wu YJ, Ng Y, Duan W, Zhu YZ. (2005) Effects of purified herbal extract of Salvia miltiorrhiza on ischemic rat myocardium after acute myocardial infarction. Life Sci. 76: 2849-2860.
21. Lam BY, Lo AC, Sun X, Luo HW, Chung SK, Sucher NJ. (2003) Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine. 10: 286-291.
22. Kang DG, Oh H, Sohn EJ, Hur TY, Lee KC, Kim KJ, Kim TY, Lee HS. (2004) Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats. Life Sci. 75: 1801-1816.
23. Belin de Chantemèle EJ, Vessières E, Guihot AL, Toutain B, Maquignau M, Loufrani L, Henrion D. (2009) Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow. Cardiovasc Res. 81: 788-796.
24. Pang HH, Jiang MF, Wang QH, Wang XY, Gao W, Tian ZH, Huang JM. (2018) Metabolic profile of danshen in rats by HPLC-LTQ-Orbitrap mass spectrometry. J Zhejiang Univ Sci B. 19: 227-244.
25. Ryu Y, Jin L, Kee HJ, Piao ZH, Cho JY, Kim GR, Choi SY, Lin MQ, Jeong MH. (2016) Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Sci Rep. 6: 34790.
26. Du GJ, Zhang Z, Wen XD, Yu C, Calway T, Yuan CS, Wang CZ. (2012) Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients. 4: 1679-1691.
27. Bak EJ, Kim J, Jang S, Woo GH, Yoon HG, Yoo YJ, Cha JH. (2013) Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scand J Clin Lab Invest. 73: 607-614.
28. Chien MY, Ku YH, Chang JM, Yang CM, Chen CH. (2016) Effects of herbal mixture extracts on obesity in rats fed a high-fat diet. J Food Drug Anal. 24: 594-601.
29. Huang JL, McLeish MJ. (1989) High-performance liquid chromatographic determination of the alkaloids in betel nut. J Chromatogr. 475: 447-450.
30. Ling HY, Wang G, Zhang W, Li X, Zhou SH, Hu B. (2012) Arecoline improves vascular endothelial function in high fructose-fed rats via increasing cystathionine-γ-lyase expression and activating K(ATP) channels. Acta Pharmacol Sin. 33: 1023-1029.
31. Chandra JN, Malviya M, Sadashiva CT, Subhash MN, Rangappa KS. (2008) Effect of novel arecoline thiazolidinones as muscarinic receptor 1 agonist in Alzheimer′s dementia models. Neurochem Int. 52: 376-383.
32. Wei X, Zhang J, Niu J, Zhou X, Li J, Li B. (2015) Evaluation of arecoline hydrobromide toxicity after a 14-day repeated oral administration in Wistar rats. PLoS One. 10: e0120165.
33. Lin WY, Pi-Sunyer FX, Liu CS, Li TC, Li CI, Huang CY, Lin CC. (2009) Betel nut chewing is strongly associated with general and central obesity in Chinese male middle-aged adults. Obesity (Silver Spring). 17: 1247-1254.
34. Peng WH, Chau YP, Lu KS, Kung HN. (2016) Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice. Chem Senses. 41: 25-34.
35. Haslam DW, James WP. (2005) Obesity. Lancet. 366: 1197-1209.
36. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuutila P. (2009) Functional brown adipose tissue in healthy adults. N Engl J Med. 360: 1518-1525.
37. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 298: E1244-1253.
38. Kopecky J, Clarke G, Enerbäck S, Spiegelman B, Kozak LP. (1995) Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest. 96: 2914-2923.
39. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 121: 96-105.
40. Boucher BJ, Mannan N. (2002) Metabolic effects of the consumption of Areca catechu. Addict Biol. 7: 103-110.
41. Gupta PC, Warnakulasuriya S. (2002) Global epidemiology of areca nut usage. Addict Biol. 7: 77-83.
42. Mannan N, Boucher BJ, Evans SJ. (2000) Increased waist size and weight in relation to consumption of Areca catechu (betel-nut); a risk factor for increased glycaemia in Asians in east London. Br J Nutr. 83: 267-275.
43. Chiang CP, Chang MC, Lee JJ, Chang JY, Lee PH, Hahn LJ, Jeng JH. (2004) Hamsters chewing betel quid or areca nut directly show a decrease in body weight and survival rates with concomitant epithelial hyperplasia of cheek pouch. Oral Oncol. 40: 720-727.
44. Liu YJ, Peng W, Hu MB, Xu M, Wu CJ. (2016) The pharmacology, toxicology and potential applications of arecoline: a review. Pharm Biol. 54: 2753-2760.
45. Lodge D, Johnston GA, Curtis DR, Brand SJ. (1977) Effects of the Areca nut constituents arecaidine and guvacine on the action of GABA in the cat central nervous system. Brain Res. 136: 513-522.
46. Lim C, Lim S, Lee B, Kim B, Cho S. (2017) Effect of methanol extract of Salviae miltiorrhizae Radix in high-fat diet-induced hyperlipidemic mice. Chin Med. 13: 29.
47. Green H, Kehinde O. (1975) An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 5: 19-27.
48. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 150: 366-376.
49. Ross SR, Choy L, Graves RA, Fox N, Solevjeva V, Klaus S, Ricquier D, Spiegelman BM. (1992) Hibernoma formation in transgenic mice and isolation of a brown adipocyte cell line expressing the uncoupling protein gene. Proc Natl Acad Sci U S A. 89: 7561-7565.
50. Chomczynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 162: 156-159.
51. Hsu HF, Tsou TC, Chao HR, Shy CG, Kuo YT, Tsai FY, Yeh SC, Ko YC. (2010) Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes-A possible role of betel-quid chewing in metabolic syndrome. Toxicol Appl Pharmacol. 245: 370-377.
52. Jones JR, Barrick C, Kim KA, Lindner J, Blondeau B, Fujimoto Y, Shiota M, Kesterson RA, Kahn BB, Magnuson MA. (2005) Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A. 102: 6207-6212.
53. Imran KM, Rahman N, Yoon D, Jeon M, Lee BT, Kim YS. (2017) Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling. Biochim Biophys Acta Mol Cell Biol Lipids. 1862: 1110-1120.
54. Ling HY, He J, Yang SS, Zhang KF, He JQ, Zhu ZM, Feng SD. (2017) The effects of arecoline on the lipid metabolism of 3T3-L1 adipocytes. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 33: 22-25.
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2019-3-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明