參考文獻 |
1. 環境保護署土壤及地下水整治網. 土壤及地下水污染預防、調查與管理. 各年度年報 4 (2016).
2. Ayangbenro, A. S. & Babalola, O. O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int J Environ Res Public Health 14 (2017). https://www.ncbi.nlm.nih.gov/pubmed/28106848.
3. USEPA. Mercury Retrieved. (2015). http://www.epa.gov/mercury/index.html.
4. Su, C., Jiang, L. & Zhang, W. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Crit. 3, 24-38 (2014).
5. Brar, S. K. et al. Bioremediation of Hazardous Wastes—A Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 10, 59-72 (2006). http://ascelibrary.org/doi/10.1061/%28ASCE%291090-025X%282006%2910%3A2%2859%29.
6. Wei, W. et al. Simple Whole-Cell Biodetection and Bioremediation of Heavy Metals Based on an Engineered Lead-Specific Operon. Environmental Science & Technology 48, 3363-3371 (2014). https://doi.org/10.1021/es4046567.
7. Gadd, G. M. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology 84, 13-28 (2008). https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.1999.
8. Malik, A. Metal bioremediation through growing cells. Environ Int 30, 261-278 (2004).
9. Yang, T., Chen, M.-L. & Wang, J.-H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends in Analytical Chemistry 66, 90-102 (2015). http://www.sciencedirect.com/science/article/pii/S0165993615000175.
10. Fomina, M. & Gadd, G. M. Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160, 3-14 (2014).
11. Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Engineering in Life Sciences 4, 219-232 (2004). https://onlinelibrary.wiley.com/doi/abs/10.1002/elsc.200420026.
12. Ramrakhiani, L., Ghosh, S. & Majumdar, S. Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Appl Biochem Biotechnol 180, 41-78 (2016).
13. Gupta, V. K., Nayak, A. & Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research 20, 1-18 (2015). http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1HGBK_2015_v20n1_1.
14. Chaturvedi, A. D., Pal, D., Penta, S. & Kumar, A. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J Microbiol Biotechnol 31, 1595-1603 (2015).
15. Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, O. P. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Frontiers in Plant Science 7 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791364/.
16. VCI. Copper History/Future. Van Commodities Inc. (2011). http://trademetalfutures.com/copperhistory.html.
17. Wuana, R. A. & Okieimen, F. E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Notices (2011). https://www.hindawi.com/journals/isrn/2011/402647/.
18. Martinez, C. E. & Motto, H. L. Solubility of lead, zinc and copper added to mineral soils. Environ Pollut 107, 153-158 (2000).
19. Eriksson, J., Andersson, A. & Andersson, R. The state of Swedish farmlands. Technical Repoet 4778 (1997).
20. Singh, M. M. et al. Serum Copper in Myocardial Infarction—Diagnostic and Prognostic Significance. Angiology 36, 504-510 (1985). https://doi.org/10.1177/000331978503600805.
21. Kok, F. J. et al. Serum copper and zinc and the risk of death from cancer and cardiovascular disease. American Journal of Epidemiology 128, 352-359 (1988). https://academic.oup.com/aje/article/128/2/352/61085.
22. Salonen, J. T., Salonen, R., Korpela, H., Suntioinen, S. & Tuomilehto, J. Serum Copper and the Risk of Acute Myocardial Infarction: A Prospective Population Study in Men in Eastern Finland. American Journal of Epidemiology 134, 268-276 (1991). https://academic.oup.com/aje/article/134/3/268/146623.
23. Kelley, D. S., Daudu, P. A., Taylor, P. C., Mackey, B. E. & Turnlund, J. R. Effects of low-copper diets on human immune response. The American Journal of Clinical Nutrition 62, 412-416 (1995). https://academic.oup.com/ajcn/article/62/2/412/4651388.
24. Benavides, M. P., Gallego, S. M. & Tomaro, M. L. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17, 21-34 (2005). http://www.scielo.br/scielo.php?script=sci_abstract&pid=S1677-04202005000100003&lng=en&nrm=iso&tlng=en.
25. Khan, A., Khan, S., Khan, M. A., Qamar, Z. & Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research 22, 13772-13799 (2015). https://link.springer.com/article/10.1007/s11356-015-4881-0.
26. Pan, L.-b., Ma, J., Wang, X.-l. & Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 148, 248-254 (2016). http://www.sciencedirect.com/science/article/pii/S0045653515305038.
27. Khan, S., Rehman, S., Zeb Khan, A., Amjad Khan, M. & Tahir Shah, M. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety 73, 1820-1827 (2010). http://www.sciencedirect.com/science/article/pii/S0147651310002137.
28. Liu, Y. et al. High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability. Applied Geochemistry 37, 149-156 (2013). http://www.sciencedirect.com/science/article/pii/S0883292713002023.
29. Khan, S. M. Measuring Mental Chronometry and Cognitive Efficiency through Discrimination Reaction Test for Acquired Reflexes – Case of Loco Pilots of Western Railway. International Journal of Social Sciences and Management 3, 102-107 (2016). https://www.nepjol.info/index.php/IJSSM/article/view/13177.
30. Nawab, J. et al. Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor. Environmental Science and Pollution Research 23, 2381-2390 (2016). https://link.springer.com/article/10.1007/s11356-015-5458-7.
31. Li, Y., Ning, F., Cong, W., Zhang, M. & Tang, Y. Investigating pellet charring and temperature in ultrasonic vibration-assisted pelleting of wheat straw for cellulosic biofuel manufacturing. Renewable Energy 92, 312-320 (2016). http://www.sciencedirect.com/science/article/pii/S0960148116301070.
32. Kobayashi, J. Pollution by cadmium and the itai-itai disease in Japan. In: Oeheme, F.W., Dekker, M. (Eds.), Toxicity of Heavy Metals in the Environment. Marcel Dekker, New York, 199-260 (1978).
33. Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science 180, 169-181 (2011). http://www.sciencedirect.com/science/article/pii/S0168945210002402.
34. Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J. & Cozens, G. Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health 26, 343-357 (2004). https://link.springer.com/article/10.1007/s10653-005-4669-0.
35. Franz, E., Römkens, P., van Raamsdonk, L. & van der Fels-Klerx, I. A Chain Modeling Approach To Estimate the Impact of Soil Cadmium Pollution on Human Dietary Exposure. Journal of Food Protection 71, 2504-2513 (2008). http://jfoodprotection.org/doi/abs/10.4315/0362-028X-71.12.2504.
36. Kobayashi, E. et al. Estimation of benchmark doses as threshold levels of urinary cadmium, based on excretion of β2-microglobulin in cadmium-polluted and non-polluted regions in Japan. Toxicology Letters 179, 108-112 (2008). http://www.sciencedirect.com/science/article/pii/S0378427408001240.
37. Yang, Y., Chen, W., Wang, M., Li, Y. & Peng, C. Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors. Science of The Total Environment 584-585, 942-949 (2017). http://www.sciencedirect.com/science/article/pii/S0048969717301535.
38. Wang, M., Chen, W. & Peng, C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere 144, 346-351 (2016). http://www.sciencedirect.com/science/article/pii/S0045653515300886.
39. Moynihan, M. et al. Dietary predictors of urinary cadmium among pregnant women and children. Science of The Total Environment 575, 1255-1262 (2017). http://www.sciencedirect.com/science/article/pii/S0048969716321349.
40. FAO/WHO. Food Additives and Contaminants. Codex Alimentarius Commission. Joint FAO/WHO Food Standards Program. ALI-NORM 01/12A, 1-289 (2001). https://www.scopus.com/record/display.uri?eid=2-s2.0-85006839275&origin=inward&txGid=8da434a51d495227a6370151d73eeef4.
41. USEPA. US Environmental Protection Agency. Guidance for Developingecological Soil Screening Levels. Washington, DC. (2005).
42. 行政院環境保護暑. 鎘之安全資料表. 毒災防救管理資訊系統, 5-7 (2018). https://toxicdms.epa.gov.tw/Chm_/WriteDB.aspx?serial=45&path=103SDS/037-01.pdf.
43. Hamer, D. H. Metallothionein. Annual Review of Biochemistry 55, 913-951 (1986). http://www.ncbi.nlm.nih.gov/pubmed/3527054.
44. Ruiz, O. N., Alvarez, D., Gonzalez-Ruiz, G. & Torres, C. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC biotechnology 11, 82 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21838857.
45. Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology 5 (2014). http://journal.frontiersin.org/article/10.3389/fmicb.2014.00172/abstract.
46. O′Sullivan, D. J. & Klaenhammer, T. R. High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137, 227-231 (1993). http://www.sciencedirect.com/science/article/pii/037811199390011Q.
47. Posno, M. et al. Incompatibility of Lactobacillus Vectors with Replicons Derived from Small Cryptic Lactobacillus Plasmids and Segregational Instability of the Introduced Vectors. Applied and Environmental Microbiology 57, 1822-1828 (1991). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC183475/.
48. Douglas, G. L. & Klaenhammer, T. R. Directed Chromosomal Integration and Expression of the Reporter Gene gusA3 in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology 77, 7365-7371 (2011). http://aem.asm.org/content/77/20/7365.
49. Gu, P. et al. A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Scientific Reports 5 (2015). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389210/.
50. Reyrat, J.-M., Pelicic, V., Gicquel, B. & Rappuoli, R. Counterselectable Markers: Untapped Tools for Bacterial Genetics and Pathogenesis. Infection and Immunity 66, 4011-4017 (1998). http://iai.asm.org/content/66/9/4011.
51. Gong, T. et al. Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane. ACS Synthetic Biology 5, 434-442 (2016). http://dx.doi.org/10.1021/acssynbio.6b00025.
52. Neuhard, J. Utilization of preformed pyrimidine bases and nucleosides. Metabolism of nucleotides, nucleosides and nucleobases in microorganisms (1983). http://agris.fao.org/agris-search/search.do?recordID=US201302202046.
53. Graf, N. & Altenbuchner, J. Development of a Method for Markerless Gene Deletion in Pseudomonas putida ▿. Applied and Environmental Microbiology 77, 5549-5552 (2011). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147467/.
54. Fabret, C., Ehrlich, S. D. & Noirot, P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Molecular Microbiology 46, 25-36 (2002). http://www.ncbi.nlm.nih.gov/pubmed/12366828.
55. Kristich, C. J., Chandler, J. R. & Dunny, G. M. Development of a host-genotype-independent counterselectable marker and a high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid 57, 131-144 (2007). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852458/.
56. Goh, Y. J. et al. Development and Application of a upp-Based Counterselective Gene Replacement System for the Study of the S-Layer Protein SlpX of Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology 75, 3093-3105 (2009). http://aem.asm.org/content/75/10/3093.
57. Keller, K. L., Bender, K. S. & Wall, J. D. Development of a Markerless Genetic Exchange System for Desulfovibrio vulgaris Hildenborough and Its Use in Generating a Strain with Increased Transformation Efficiency. Applied and Environmental Microbiology 75, 7682-7691 (2009). http://aem.asm.org/content/75/24/7682.
58. Luo, K.-H., Chen, S.-C. & Liao, H.-Y. Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan. Journal of Soil and Groundwater Environment 21, 16-24 (2016). http://www.kpubs.org/article/articleMain.kpubs?articleANo=JGSTB5_2016_v21n5_16.
59. Beyer, H. M. et al. AQUA Cloning: A Versatile and Simple Enzyme-Free Cloning Approach. PLOS ONE 10, e0137652 (2015). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137652.
60. Ashraf, M. A. et al. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Management 198, 132-143 (2017). http://linkinghub.elsevier.com/retrieve/pii/S0301479717304085.
61. Ayangbenro, A. S. & Babalola, O. O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health 14, 94 (2017). http://www.mdpi.com/1660-4601/14/1/94.
62. He, Y. et al. Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. Ecotoxicology 23, 56-64 (2013). http://link.springer.com/article/10.1007/s10646-013-1151-0.
63. Deng, X. & Jia, P. Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresource Technology 102, 3083-3088 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21094044.
64. Nawapan, S. et al. Functional and Expression Analyses of the cop Operon, Required for Copper Resistance in Agrobacterium tumefaciens. Journal of Bacteriology 191, 5159-5168 (2009). http://jb.asm.org/content/191/16/5159.
65. Bondarczuk, K. & Piotrowska-Seget, Z. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biology and Toxicology 29, 397-405 (2013). https://link.springer.com/article/10.1007/s10565-013-9262-1.
66. Diels, L., Dong, Q., van der Lelie, D., Baeyens, W. & Mergeay, M. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. Journal of Industrial Microbiology 14, 142-153 (1995). http://www.ncbi.nlm.nih.gov/pubmed/7766206.
67. Qiu, D., Damron, F. H., Mima, T., Schweizer, H. P. & Yu, H. D. PBAD-Based Shuttle Vectors for Functional Analysis of Toxic and Highly Regulated Genes in Pseudomonas and Burkholderia spp. and Other Bacteria. Applied and Environmental Microbiology 74, 7422-7426 (2008). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592904/.
68. Falco, S. C., Rose, M. & Botstein, D. Homologous Recombination between Episomal Plasmids and Chromosomes in Yeast. Genetics 105, 843-856 (1983). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202229/.
69. Choi, K. H., Kumar, A. & Schweizer, H. P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64, 391-397 (2006). https://www.ncbi.nlm.nih.gov/pubmed/15987659.
70. Martín, M. C. et al. Integrative Expression System for Delivery of Antibody Fragments by Lactobacilli. Applied and Environmental Microbiology 77, 2174-2179 (2011). http://aem.asm.org/content/77/6/2174.
71. Song, B.-f., Ju, L.-z., Li, Y.-j. & Tang, L.-j. Chromosomal Insertions in the Lactobacillus casei upp Gene That Are Useful for Vaccine Expression. Applied and Environmental Microbiology 80, 3321-3326 (2014). http://aem.asm.org/lookup/doi/10.1128/AEM.00175-14.
72. Berka, T., Shatzman, A., Zimmerman, J., Strickler, J. & Rosenberg, M. Efficient expression of the yeast metallothionein gene in Escherichia coli. Journal of Bacteriology 170, 21-26 (1988). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC210600/.
73. Yang, F. et al. High-yield expression in Escherichia coli of soluble human MT2A with native functions. Protein Expression and Purification 53, 186-194 (2007). http://www.ncbi.nlm.nih.gov/pubmed/17224279.
74. Part:BBa J23100 - parts.igem.org. http://parts.igem.org/Part:BBa_J23100.
75. Part:BBa B0034 - parts.igem.org. http://parts.igem.org/Part:BBa_B0034.
76. Part:BBa B0010 - parts.igem.org. http://parts.igem.org/Part:BBa_B0010.
77. Açıkel, Ü. & Alp, T. A study on the inhibition kinetics of bioaccumulation of Cu(II) and Ni(II) ions using Rhizopus delemar. Journal of Hazardous Materials 168, 1449-1458 (2009). http://www.sciencedirect.com/science/article/pii/S0304389409004294.
78. Hansda, A., Kumar, V. & Anshumali, n. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology & Biotechnology 32, 170 (2016). http://www.ncbi.nlm.nih.gov/pubmed/27565780.
79. Khan, Z., Rehman, A. & Hussain, S. Z. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater. Chemosphere 159, 32-43 (2016). http://www.sciencedirect.com/science/article/pii/S0045653516307238.
80. Yang, Y. et al. Bioremoval of Cu2+ from CMP wastewater by a novel copper-resistant bacterium Cupriavidus gilardii CR3: characteristics and mechanisms. RSC Advances 7, 18793-18802 (2017). http://xlink.rsc.org/?DOI=C7RA01163F.
81. Argüello, J. M., Raimunda, D. & Padilla-Benavides, T. Mechanisms of copper homeostasis in bacteria. Frontiers in Cellular and Infection Microbiology 3 (2013). http://journal.frontiersin.org/article/10.3389/fcimb.2013.00073/abstract.
82. Huang, F. et al. Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicology and Environmental Safety 157, 216-226 (2018). http://linkinghub.elsevier.com/retrieve/pii/S0147651318302653.
83. More, T. T., Yadav, J. S. S., Yan, S., Tyagi, R. D. & Surampalli, R. Y. Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management 144, 1-25 (2014). http://www.sciencedirect.com/science/article/pii/S0301479714002503.
84. Poirier, I., Hammann, P., Kuhn, L. & Bertrand, M. Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: A proteome analysis. Aquatic Toxicology 128-129, 215-232 (2013). http://www.sciencedirect.com/science/article/pii/S0166445X12003256.
85. 李嘉原. 耐汞菌株的篩選與特性分析. 1-121 (2013).
86. Pinter, T. B. J., Irvine, G. W. & Stillman, M. J. Domain Selection in Metallothionein 1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium Exchange. Biochemistry 54, 5006-5016 (2015). http://pubs.acs.org/doi/10.1021/acs.biochem.5b00452.
87. Lee, A. H., Symington, L. S. & Fidock, D. A. DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum. Microbiology and Molecular Biology Reviews : MMBR 78, 469-486 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187680/. |