博碩士論文 105821031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.206.169
姓名 呂哲瑋(Che-Wei Lu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討
(Development of Recombinant Pseudomonas sp. A46 for heavy metal bioremediation and its potential of bioaccumulation and biosorption)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發
★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治
★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制★ 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體
★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性★ 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力
★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用★ 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性
★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制
★ 研究雙特松對HepG2細胞之DNA修復的影響★ 金屬硫蛋白在大腸桿菌的表達與金屬累積能力測試
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 生物累積及生物吸附是微生物作為抵抗外界重金屬的兩個重要的機制,可以將外界的重金屬與環境做分離、去毒性並固定在細菌體內,使得細菌進而成為極有潛力的生物整治工具。本研究嘗試在Pseudomonas sp. A46菌株中表現金屬硫蛋白,試圖提升其生物累積之能力。為了增加蛋白質表現之穩定以及避免使用抗生素,使得此菌株能夠應用在野外,本研究開發能於Pseudomonas sp. A46使用之反向篩選系統,在剔除upp基因後,將能表現綠螢光蛋白與金屬硫蛋白融合蛋白之基因片匣整合至染色體中,對染色體做PCR分析確認片匣成功植入染色體中,接著利用反轉錄PCR分析以及西方墨點法證實融合蛋白成功表現,並且連續繼代40次確定基因之穩定性。完成菌株建立後,針對A46、M01及pJBME測定各菌株對於重金屬銅和鎘之最小抑制濃度,銅皆為250ppm,鎘皆為20ppm,在敏感度測試亦得到一樣的結果,菌株對於重金屬之生長抗性沒有因基因改造而有所增加。在銅及鎘之生物累積試驗中,A46、M01及pJBME並沒有明顯差異,顯示金屬硫蛋白可能不能增加生物累積之能力。在EDTA淋洗試驗中,發現大部分的銅累積於胞內,推得此菌對於銅主要行生物累積,但是總體移除率只有2%,推得外送幫浦蛋白及生物膜構造有效阻隔銅的進入。然而,在相同實驗中,大多數之鎘卻吸附於胞外,並且總體移除率達30%,顯示此菌對於鎘主要行生物吸附,生物膜的產生有助於吸附重金屬鎘並且保護菌株。雖然金屬硫蛋白無法提升此株菌之生物累積能力,但本株菌對於重金屬鎘有著強大之生物吸附能力,未來可以針對其機制做更深入之研究。
摘要(英) Bioaccumulation and biosorption are two important mechanisms for some microorganisms to resist heavy metals, which makes bacteria a potential bioremediation tool. In an attempt to enhance the bioaccumulation capacity of Pseudomonas sp. A46 strain, we cloned the gene of metallothionein into Pseudomonas sp. A46. We developed a genetic bacteria with counter selection system that can be used in Pseudomonas sp. A46. After removing the upp gene, the gene fragment that expresses the fusion protein. Thereafter, the minimum inhibitory concentrations (MIC) for the heavy metal copper and cadmium were determined for A46, M01(MT1 expressed by chromosome) and pJBME (expressed MT1 by plasmid). The MIC of copper was 250 ppm and the cadmium was 20 ppm. With these MIC values, the resistance of the genetic strain to heavy metals was not increased. In the copper and cadmium bioaccumulation assay, there was no significant difference among A46, M01, and pJBME, suggesting that metallothionein may not increase the bioaccumulation capacity. In the EDTA leaching test for the biosorption of heavy metals, most of the copper was found to accumulate in the interior of the cells. The bioaccumulation of this bacterium was a key player. However, the overall removal rate was only 2%. n the other hand, most of the cadmium was adsorbed extracellularly, and the overall removal rate was 35%, indicating that the bacterium bioremediate cadmium via biosorption, and the biofilm production was helpful in adsorbing cadmium and protecting the strain. Although metallothionein cannot increase the bioaccumulation capacity of this strain, this strain of bacteria has a strong biosorption capacity for cadmium.
關鍵字(中) ★ 銅
★ 鎘
★ 微生物整治
★ 金屬硫蛋白
★ 生物累積
★ 生物吸附
關鍵字(英) ★ Copper
★ Cadmium
★ Metallothionein
★ Bioaccumulation
★ Biosoprtion
論文目次 碩博士論文電子檔授權書 I
國立中央大學博碩士紙本論文延後公開/下架申請書 II
國立中央大學碩士班研究生論文指導教授推薦書 III
國立中央大學碩士班研究生論文口試委員審定書 IV
致謝 V
摘要 VI
Abstract VII
目錄 VIII
圖目錄 XII
表目錄 XV
第壹章 緒論 (Introduction) 1
1.1 研究背景 1
1.2 微生物生物整治 2
1.2.1生物吸收 (Biosorption) 2
1.2.2 生物累積 (Bioaccumulation) 3
1.2.3 Pseudomonas sp. A46之前人研究 4
1.3 重金屬之汙染 4
1.3.1 銅之型態、汙染來源及對人體的危害及影響 4
1.3.4 鎘之型態、汙染來源及對人體的危害及影響 5
1.4 金屬硫蛋白之特性及功能 8
1.5染色體整合之生物應用 8
第貳章 實驗目的和實驗架構 10
第參章 實驗材料與方法 (Materials and Methods) 12
第一節 實驗材料 12
3.1.1 使用儀器與廠牌 12
3.1.2 常用藥品與試劑 14
第二節 實驗方法 19
3.2.1 菌株來源、保存與繼代培養 (Pseudomonas sp. A46) 19
3.2.2 菌株來源、保存與繼代培養 (E. coli) 20
3.2.3 細菌Genomic DNA萃取 20
3.2.4 細菌RNA萃取 21
3.2.5 反轉錄作用 23
3.2.6 DNA/RNA洋菜膠電泳 24
3.2.7 聚合酶鏈鎖反應 25
3.2.8 TSS法之大腸桿菌勝任細胞備製及轉型 26
3.2.9 細菌之質體抽取及純化 28
3.2.10 限制酵素處理 29
3.2.11 DNA膠體純化 29
3.2.12 DNA接合反應 31
3.2.13 蛋白質萃取 31
3.2.14 蛋白質濃度測定 32
3.2.15 SDS-PAGE蛋白質電泳 33
3.2.16 蛋白質轉漬 34
3.2.17 西方免疫墨點法 35
3.2.18 細菌生長曲線測定 36
3.2.19 最小抑制濃度測定 36
3.2.20 重金屬敏感度測試 37
3.2.21 細菌生物累積實驗 38
3.2.22 EDTA淋洗測定金屬累積位置 39
3.2.23 建構反向篩選用剔除upp載體pUCKdupp 40
3.2.24 建構整合型MT1-EGFP表現片匣載體pUCK01 41
第肆章 實驗結果 (Result) 43
4.1 建構upp反向篩選系統 43
4.2 以反向篩選系統整合MT1-EGFP表現片匣於Pseudomonas sp. A46 44
4.3 以RT-PCR分析Pseudomonas sp. M01金屬硫蛋白基因之mRNA表現 45
4.4 以西方墨點法評估MT1-EGFP蛋白質於Pseudomonas sp. M01內表現量與穩定度 45
4.5 以40次連續繼代後Pseudomonas sp. M01之基因穩定度檢驗 46
4.6 以西方墨點法及螢光顯微鏡圖比較MT1-EGFP蛋白質於Pseudomonas sp. M01及pJBME內表現量與穩定性之差異 46
4.7 檢驗Pseudomonas spp.對重金屬之最低抑制生長濃度(MIC)及重金屬敏感度 47
4.8 以生物固定法測試Pseudomonas sp. M01及pJBME銅及鎘之生物累積能力 47
4.9 以EDTA淋洗法分析重金屬銅及鎘之菌體結合位置 48
第伍章 討論 ( Discussion ) 49
5.1 金屬硫蛋白之生物累積加強法 49
5.2 金屬硫蛋白之持續表現型片匣設計以及互換機制討論 49
5.3 染色體整合表現MT1-EGFP之表現以及未來發展 51
5.4 Pseudomonas sp. A46之生物累積以及生物吸附機制探討 52
第陸章 結論 (Conclusion) 55
參考文獻 (Reference) 56
圖表 65
附加資料(Supplementary File) 83
參考文獻 1. 環境保護署土壤及地下水整治網. 土壤及地下水污染預防、調查與管理. 各年度年報 4 (2016).
2. Ayangbenro, A. S. & Babalola, O. O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int J Environ Res Public Health 14 (2017). https://www.ncbi.nlm.nih.gov/pubmed/28106848.
3. USEPA. Mercury Retrieved. (2015). http://www.epa.gov/mercury/index.html.
4. Su, C., Jiang, L. & Zhang, W. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Crit. 3, 24-38 (2014).
5. Brar, S. K. et al. Bioremediation of Hazardous Wastes—A Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 10, 59-72 (2006). http://ascelibrary.org/doi/10.1061/%28ASCE%291090-025X%282006%2910%3A2%2859%29.
6. Wei, W. et al. Simple Whole-Cell Biodetection and Bioremediation of Heavy Metals Based on an Engineered Lead-Specific Operon. Environmental Science & Technology 48, 3363-3371 (2014). https://doi.org/10.1021/es4046567.
7. Gadd, G. M. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology 84, 13-28 (2008). https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.1999.
8. Malik, A. Metal bioremediation through growing cells. Environ Int 30, 261-278 (2004).
9. Yang, T., Chen, M.-L. & Wang, J.-H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends in Analytical Chemistry 66, 90-102 (2015). http://www.sciencedirect.com/science/article/pii/S0165993615000175.
10. Fomina, M. & Gadd, G. M. Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160, 3-14 (2014).
11. Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Engineering in Life Sciences 4, 219-232 (2004). https://onlinelibrary.wiley.com/doi/abs/10.1002/elsc.200420026.
12. Ramrakhiani, L., Ghosh, S. & Majumdar, S. Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Appl Biochem Biotechnol 180, 41-78 (2016).
13. Gupta, V. K., Nayak, A. & Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research 20, 1-18 (2015). http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=E1HGBK_2015_v20n1_1.
14. Chaturvedi, A. D., Pal, D., Penta, S. & Kumar, A. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World J Microbiol Biotechnol 31, 1595-1603 (2015).
15. Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, O. P. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Frontiers in Plant Science 7 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791364/.
16. VCI. Copper History/Future. Van Commodities Inc. (2011). http://trademetalfutures.com/copperhistory.html.
17. Wuana, R. A. & Okieimen, F. E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Notices (2011). https://www.hindawi.com/journals/isrn/2011/402647/.
18. Martinez, C. E. & Motto, H. L. Solubility of lead, zinc and copper added to mineral soils. Environ Pollut 107, 153-158 (2000).
19. Eriksson, J., Andersson, A. & Andersson, R. The state of Swedish farmlands. Technical Repoet 4778 (1997).
20. Singh, M. M. et al. Serum Copper in Myocardial Infarction—Diagnostic and Prognostic Significance. Angiology 36, 504-510 (1985). https://doi.org/10.1177/000331978503600805.
21. Kok, F. J. et al. Serum copper and zinc and the risk of death from cancer and cardiovascular disease. American Journal of Epidemiology 128, 352-359 (1988). https://academic.oup.com/aje/article/128/2/352/61085.
22. Salonen, J. T., Salonen, R., Korpela, H., Suntioinen, S. & Tuomilehto, J. Serum Copper and the Risk of Acute Myocardial Infarction: A Prospective Population Study in Men in Eastern Finland. American Journal of Epidemiology 134, 268-276 (1991). https://academic.oup.com/aje/article/134/3/268/146623.
23. Kelley, D. S., Daudu, P. A., Taylor, P. C., Mackey, B. E. & Turnlund, J. R. Effects of low-copper diets on human immune response. The American Journal of Clinical Nutrition 62, 412-416 (1995). https://academic.oup.com/ajcn/article/62/2/412/4651388.
24. Benavides, M. P., Gallego, S. M. & Tomaro, M. L. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17, 21-34 (2005). http://www.scielo.br/scielo.php?script=sci_abstract&pid=S1677-04202005000100003&lng=en&nrm=iso&tlng=en.
25. Khan, A., Khan, S., Khan, M. A., Qamar, Z. & Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environmental Science and Pollution Research 22, 13772-13799 (2015). https://link.springer.com/article/10.1007/s11356-015-4881-0.
26. Pan, L.-b., Ma, J., Wang, X.-l. & Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 148, 248-254 (2016). http://www.sciencedirect.com/science/article/pii/S0045653515305038.
27. Khan, S., Rehman, S., Zeb Khan, A., Amjad Khan, M. & Tahir Shah, M. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environmental Safety 73, 1820-1827 (2010). http://www.sciencedirect.com/science/article/pii/S0147651310002137.
28. Liu, Y. et al. High cadmium concentration in soil in the Three Gorges region: Geogenic source and potential bioavailability. Applied Geochemistry 37, 149-156 (2013). http://www.sciencedirect.com/science/article/pii/S0883292713002023.
29. Khan, S. M. Measuring Mental Chronometry and Cognitive Efficiency through Discrimination Reaction Test for Acquired Reflexes – Case of Loco Pilots of Western Railway. International Journal of Social Sciences and Management 3, 102-107 (2016). https://www.nepjol.info/index.php/IJSSM/article/view/13177.
30. Nawab, J. et al. Organic amendments impact the availability of heavy metal(loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor. Environmental Science and Pollution Research 23, 2381-2390 (2016). https://link.springer.com/article/10.1007/s11356-015-5458-7.
31. Li, Y., Ning, F., Cong, W., Zhang, M. & Tang, Y. Investigating pellet charring and temperature in ultrasonic vibration-assisted pelleting of wheat straw for cellulosic biofuel manufacturing. Renewable Energy 92, 312-320 (2016). http://www.sciencedirect.com/science/article/pii/S0960148116301070.
32. Kobayashi, J. Pollution by cadmium and the itai-itai disease in Japan. In: Oeheme, F.W., Dekker, M. (Eds.), Toxicity of Heavy Metals in the Environment. Marcel Dekker, New York, 199-260 (1978).
33. Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science 180, 169-181 (2011). http://www.sciencedirect.com/science/article/pii/S0168945210002402.
34. Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J. & Cozens, G. Heavy metals in soils and crops in Southeast Asia. Environmental Geochemistry and Health 26, 343-357 (2004). https://link.springer.com/article/10.1007/s10653-005-4669-0.
35. Franz, E., Römkens, P., van Raamsdonk, L. & van der Fels-Klerx, I. A Chain Modeling Approach To Estimate the Impact of Soil Cadmium Pollution on Human Dietary Exposure. Journal of Food Protection 71, 2504-2513 (2008). http://jfoodprotection.org/doi/abs/10.4315/0362-028X-71.12.2504.
36. Kobayashi, E. et al. Estimation of benchmark doses as threshold levels of urinary cadmium, based on excretion of β2-microglobulin in cadmium-polluted and non-polluted regions in Japan. Toxicology Letters 179, 108-112 (2008). http://www.sciencedirect.com/science/article/pii/S0378427408001240.
37. Yang, Y., Chen, W., Wang, M., Li, Y. & Peng, C. Evaluating the potential health risk of toxic trace elements in vegetables: Accounting for variations in soil factors. Science of The Total Environment 584-585, 942-949 (2017). http://www.sciencedirect.com/science/article/pii/S0048969717301535.
38. Wang, M., Chen, W. & Peng, C. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere 144, 346-351 (2016). http://www.sciencedirect.com/science/article/pii/S0045653515300886.
39. Moynihan, M. et al. Dietary predictors of urinary cadmium among pregnant women and children. Science of The Total Environment 575, 1255-1262 (2017). http://www.sciencedirect.com/science/article/pii/S0048969716321349.
40. FAO/WHO. Food Additives and Contaminants. Codex Alimentarius Commission. Joint FAO/WHO Food Standards Program. ALI-NORM 01/12A, 1-289 (2001). https://www.scopus.com/record/display.uri?eid=2-s2.0-85006839275&origin=inward&txGid=8da434a51d495227a6370151d73eeef4.
41. USEPA. US Environmental Protection Agency. Guidance for Developingecological Soil Screening Levels. Washington, DC. (2005).
42. 行政院環境保護暑. 鎘之安全資料表. 毒災防救管理資訊系統, 5-7 (2018). https://toxicdms.epa.gov.tw/Chm_/WriteDB.aspx?serial=45&path=103SDS/037-01.pdf.
43. Hamer, D. H. Metallothionein. Annual Review of Biochemistry 55, 913-951 (1986). http://www.ncbi.nlm.nih.gov/pubmed/3527054.
44. Ruiz, O. N., Alvarez, D., Gonzalez-Ruiz, G. & Torres, C. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC biotechnology 11, 82 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21838857.
45. Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology 5 (2014). http://journal.frontiersin.org/article/10.3389/fmicb.2014.00172/abstract.
46. O′Sullivan, D. J. & Klaenhammer, T. R. High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene 137, 227-231 (1993). http://www.sciencedirect.com/science/article/pii/037811199390011Q.
47. Posno, M. et al. Incompatibility of Lactobacillus Vectors with Replicons Derived from Small Cryptic Lactobacillus Plasmids and Segregational Instability of the Introduced Vectors. Applied and Environmental Microbiology 57, 1822-1828 (1991). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC183475/.
48. Douglas, G. L. & Klaenhammer, T. R. Directed Chromosomal Integration and Expression of the Reporter Gene gusA3 in Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology 77, 7365-7371 (2011). http://aem.asm.org/content/77/20/7365.
49. Gu, P. et al. A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Scientific Reports 5 (2015). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389210/.
50. Reyrat, J.-M., Pelicic, V., Gicquel, B. & Rappuoli, R. Counterselectable Markers: Untapped Tools for Bacterial Genetics and Pathogenesis. Infection and Immunity 66, 4011-4017 (1998). http://iai.asm.org/content/66/9/4011.
51. Gong, T. et al. Metabolic Engineering of Pseudomonas putida KT2440 for Complete Mineralization of Methyl Parathion and γ-Hexachlorocyclohexane. ACS Synthetic Biology 5, 434-442 (2016). http://dx.doi.org/10.1021/acssynbio.6b00025.
52. Neuhard, J. Utilization of preformed pyrimidine bases and nucleosides. Metabolism of nucleotides, nucleosides and nucleobases in microorganisms (1983). http://agris.fao.org/agris-search/search.do?recordID=US201302202046.
53. Graf, N. & Altenbuchner, J. Development of a Method for Markerless Gene Deletion in Pseudomonas putida ▿. Applied and Environmental Microbiology 77, 5549-5552 (2011). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147467/.
54. Fabret, C., Ehrlich, S. D. & Noirot, P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Molecular Microbiology 46, 25-36 (2002). http://www.ncbi.nlm.nih.gov/pubmed/12366828.
55. Kristich, C. J., Chandler, J. R. & Dunny, G. M. Development of a host-genotype-independent counterselectable marker and a high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid 57, 131-144 (2007). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852458/.
56. Goh, Y. J. et al. Development and Application of a upp-Based Counterselective Gene Replacement System for the Study of the S-Layer Protein SlpX of Lactobacillus acidophilus NCFM. Applied and Environmental Microbiology 75, 3093-3105 (2009). http://aem.asm.org/content/75/10/3093.
57. Keller, K. L., Bender, K. S. & Wall, J. D. Development of a Markerless Genetic Exchange System for Desulfovibrio vulgaris Hildenborough and Its Use in Generating a Strain with Increased Transformation Efficiency. Applied and Environmental Microbiology 75, 7682-7691 (2009). http://aem.asm.org/content/75/24/7682.
58. Luo, K.-H., Chen, S.-C. & Liao, H.-Y. Mercury Resistance and Removal Mechanisms of Pseudomonas sp. Isolated Mercury-contaminated Site in Taiwan. Journal of Soil and Groundwater Environment 21, 16-24 (2016). http://www.kpubs.org/article/articleMain.kpubs?articleANo=JGSTB5_2016_v21n5_16.
59. Beyer, H. M. et al. AQUA Cloning: A Versatile and Simple Enzyme-Free Cloning Approach. PLOS ONE 10, e0137652 (2015). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137652.
60. Ashraf, M. A. et al. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. Journal of Environmental Management 198, 132-143 (2017). http://linkinghub.elsevier.com/retrieve/pii/S0301479717304085.
61. Ayangbenro, A. S. & Babalola, O. O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health 14, 94 (2017). http://www.mdpi.com/1660-4601/14/1/94.
62. He, Y. et al. Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. Ecotoxicology 23, 56-64 (2013). http://link.springer.com/article/10.1007/s10646-013-1151-0.
63. Deng, X. & Jia, P. Construction and characterization of a photosynthetic bacterium genetically engineered for Hg2+ uptake. Bioresource Technology 102, 3083-3088 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21094044.
64. Nawapan, S. et al. Functional and Expression Analyses of the cop Operon, Required for Copper Resistance in Agrobacterium tumefaciens. Journal of Bacteriology 191, 5159-5168 (2009). http://jb.asm.org/content/191/16/5159.
65. Bondarczuk, K. & Piotrowska-Seget, Z. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biology and Toxicology 29, 397-405 (2013). https://link.springer.com/article/10.1007/s10565-013-9262-1.
66. Diels, L., Dong, Q., van der Lelie, D., Baeyens, W. & Mergeay, M. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. Journal of Industrial Microbiology 14, 142-153 (1995). http://www.ncbi.nlm.nih.gov/pubmed/7766206.
67. Qiu, D., Damron, F. H., Mima, T., Schweizer, H. P. & Yu, H. D. PBAD-Based Shuttle Vectors for Functional Analysis of Toxic and Highly Regulated Genes in Pseudomonas and Burkholderia spp. and Other Bacteria. Applied and Environmental Microbiology 74, 7422-7426 (2008). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592904/.
68. Falco, S. C., Rose, M. & Botstein, D. Homologous Recombination between Episomal Plasmids and Chromosomes in Yeast. Genetics 105, 843-856 (1983). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202229/.
69. Choi, K. H., Kumar, A. & Schweizer, H. P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64, 391-397 (2006). https://www.ncbi.nlm.nih.gov/pubmed/15987659.
70. Martín, M. C. et al. Integrative Expression System for Delivery of Antibody Fragments by Lactobacilli. Applied and Environmental Microbiology 77, 2174-2179 (2011). http://aem.asm.org/content/77/6/2174.
71. Song, B.-f., Ju, L.-z., Li, Y.-j. & Tang, L.-j. Chromosomal Insertions in the Lactobacillus casei upp Gene That Are Useful for Vaccine Expression. Applied and Environmental Microbiology 80, 3321-3326 (2014). http://aem.asm.org/lookup/doi/10.1128/AEM.00175-14.
72. Berka, T., Shatzman, A., Zimmerman, J., Strickler, J. & Rosenberg, M. Efficient expression of the yeast metallothionein gene in Escherichia coli. Journal of Bacteriology 170, 21-26 (1988). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC210600/.
73. Yang, F. et al. High-yield expression in Escherichia coli of soluble human MT2A with native functions. Protein Expression and Purification 53, 186-194 (2007). http://www.ncbi.nlm.nih.gov/pubmed/17224279.
74. Part:BBa J23100 - parts.igem.org. http://parts.igem.org/Part:BBa_J23100.
75. Part:BBa B0034 - parts.igem.org. http://parts.igem.org/Part:BBa_B0034.
76. Part:BBa B0010 - parts.igem.org. http://parts.igem.org/Part:BBa_B0010.
77. Açıkel, Ü. & Alp, T. A study on the inhibition kinetics of bioaccumulation of Cu(II) and Ni(II) ions using Rhizopus delemar. Journal of Hazardous Materials 168, 1449-1458 (2009). http://www.sciencedirect.com/science/article/pii/S0304389409004294.
78. Hansda, A., Kumar, V. & Anshumali, n. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World Journal of Microbiology & Biotechnology 32, 170 (2016). http://www.ncbi.nlm.nih.gov/pubmed/27565780.
79. Khan, Z., Rehman, A. & Hussain, S. Z. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater. Chemosphere 159, 32-43 (2016). http://www.sciencedirect.com/science/article/pii/S0045653516307238.
80. Yang, Y. et al. Bioremoval of Cu2+ from CMP wastewater by a novel copper-resistant bacterium Cupriavidus gilardii CR3: characteristics and mechanisms. RSC Advances 7, 18793-18802 (2017). http://xlink.rsc.org/?DOI=C7RA01163F.
81. Argüello, J. M., Raimunda, D. & Padilla-Benavides, T. Mechanisms of copper homeostasis in bacteria. Frontiers in Cellular and Infection Microbiology 3 (2013). http://journal.frontiersin.org/article/10.3389/fcimb.2013.00073/abstract.
82. Huang, F. et al. Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. Ecotoxicology and Environmental Safety 157, 216-226 (2018). http://linkinghub.elsevier.com/retrieve/pii/S0147651318302653.
83. More, T. T., Yadav, J. S. S., Yan, S., Tyagi, R. D. & Surampalli, R. Y. Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management 144, 1-25 (2014). http://www.sciencedirect.com/science/article/pii/S0301479714002503.
84. Poirier, I., Hammann, P., Kuhn, L. & Bertrand, M. Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: A proteome analysis. Aquatic Toxicology 128-129, 215-232 (2013). http://www.sciencedirect.com/science/article/pii/S0166445X12003256.
85. 李嘉原. 耐汞菌株的篩選與特性分析. 1-121 (2013).
86. Pinter, T. B. J., Irvine, G. W. & Stillman, M. J. Domain Selection in Metallothionein 1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium Exchange. Biochemistry 54, 5006-5016 (2015). http://pubs.acs.org/doi/10.1021/acs.biochem.5b00452.
87. Lee, A. H., Symington, L. S. & Fidock, D. A. DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum. Microbiology and Molecular Biology Reviews : MMBR 78, 469-486 (2014). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187680/.
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明