博碩士論文 105821607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.80.223.123
姓名 黎方寶簪(Le Phuong Bao Tram)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Influences of habitat adaptation and geological events on Asian Common Toad (Duttaphrynus melanostictus) distribution pattern)
相關論文
★ 探討resveratrol和osajin對鼻咽癌之抗腫瘤作用及機制★ 臺灣及鄰近地區澤蛙的地理親源演化關係
★ 白藜蘆醇對鼻咽癌中基因的異常甲基化及細胞移動的影響★ 調控酵母菌MIG1基因表達的轉錄因子
★ 單一核甘酸差異來研究MIG1調控表現的機制★ 利用粒腺體全基因體DNA 序列瞭解 台灣小雨蛙與近親種的演化及親源關係
★ 利用粒腺體基因(16S rRNA & ND4) 和細胞核基因(7IβFIB & 3ITBP) 研究亞洲蝮蛇在印尼地區的地理親緣演化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 南亞-東南亞地區一向被認為是生物多樣性熱點,但不幸的是,這個地區現正面臨著世界最高的森林砍伐率,而這也是導致棲息地喪失和生物多樣性受到嚴重威脅的關鍵因素。儘管由於森林砍伐的緣故導致了棲息地減少,黑眶蟾蜍卻仍然能夠擴大其在整個南亞-東南亞地區的分佈。此外,這種在亞洲常見的蟾蜍還擁有三個不同的支系,分別代表大陸,沿海和島嶼種群。因能夠辨識出影響生物體分佈現況的地質因素已經引起了研究興趣,故在本研究中利用整個南亞-東南亞地區的代表性樣本以及核與線粒體基因進行更深入的遺傳分析,旨在闡明形成黑眶蟾蜍分佈現況的地質因素。如預期地,本研究中重建了具有三種進化支系的親緣關係樹,而這三種進化支系有別於遺傳以及生態,能夠與亞洲大陸,緬甸沿海和巽他群島形成對應,並且估算出了在漸新世和中新世之間的分歧時間。為了適應位於環太平洋火山帶上巽他群島的獨特地質條件,島嶼種群具有最獨特的支系,而沿海進化分支的類群則代表了適應潮灘環境的支系。另外,結果也表明了黑眶蟾蜍可能由不止一個物種組成,以及每個物種都佔有獨特的生態位。
摘要(英) South and Southeast Asia have been considered as biodiversity hot-pot, however, unfortunately, they are now suffering from the highest rate of deforestation, which is the crucial factor causing habitat loss and puts biodiversity under serious threat. In spite of habitat loss due to deforestation, Duttaphrynus melanostictus is able to enlarge their occupation throughout South-Southeast Asia. Furthermore, this Asian Common toad also possesses three distinct lineages representing for Mainland, Coastal and Island populations. Identifying geological factors that shaped the current distribution pattern of living organisms has attracted research interest. Taking advantages of representative sample localities throughout South-Southeast Asia and intensive genetic analyses from both nuclear and mitochondrial genes, this research aims to elucidate the geological factors shaping the current distribution pattern of D. melanostictus. Expectedly, the phylogenetic tree, possessing three evolutionary lineages that differ genetically and ecologically, corresponding to Asian Mainland, Coastal Myanmar, and Sundaio islands, was reconstructed. The divergence time was estimated in Oligocene. Island group is the most distinct lineage due to the acclimatization to the unique geological condition of Sundaio islands, where locates on the Pacific Ring of Fire, while the distinction of the Coastal clade represents a lineage adapting to tidal flats environment. Furthermore, the outcome also suggests that D. melanostictus may consist of more than one species and each conquers unique niches.
關鍵字(中) ★ 黑眶蟾蜍
★ 地理親緣
關鍵字(英)
論文目次 Table of Contents
摘要 ................................................................................................................................... i
ABSTRACT ...................................................................................................................... ii
ACKNOWLEDGMENT .................................................................................................. iii
Table of Contents ............................................................................................................. iv
List of Figures .................................................................................................................. vi
List of Tables................................................................................................................... vii
1. INTRODUCTION ................................................................................................... 1
1.1 BIODIVERSITY CRISIS IN SOUTH – SOUTHEAST ASIA AND THE URGENT NEED OF PHYLOGEOGRAPHIC STUDIES: ................................... 1
1.2 AMPHIBIANS – AN OUTSTANDING CANDIDATE FOR PHYLOGEOGRAPHIC STUDIES: ................................................................. 4
1.3 Duttaphrynus melanostictus IN RELATION TO SOUTH – SOUTHEAST ASIA BIODIVERSITY CRISIS AND PHYLOGEOGRAPHY: ........................... 4
2. MATERIALS AND METHODS............................................................................. 6
2.1 SAMPLES PREPARATION: ................................................................. 6
2.1.1 SAMPLES COLLECTION: .......................................................... 6
2.1.2 DNA EXTRACTION: ................................................................. 6
2.2 POLYMERASE CHAIN REACTION (PCR): ........................................... 7
2.2.1 PRIMERS DESIGN: .................................................................... 7
2.2.2 PCR CONDITION OPTIMIZATION: ............................................ 7
2.3 DNA SEQUENCING: ........................................................................... 8
2.4 DATA ANALYSIS: .............................................................................. 8
2.4.1 SEQUENCE ALIGNMENT: ........................................................ 8
2.4.2 PHYLOGENETIC TREE RECONSTRUCTION: ............................ 8
2.4.3 GENETIC DISTANCES: ............................................................. 9
2.4.4 DIVERGENCE TIME ESTIMATION: ........................................... 9
3. RESULTS .............................................................................................................. 10
3.1 PRIMER SETS AND OPTIMAL PCR CONDITIONS FOR EACH INDIVIDUAL TARGET GENES: ................................................................. 10
3.2 PHYLOGENETIC RELATIONSHIPS AND GENETIC DISTANCES: ...... 12
3.3 DIVERGENCE TIME ESTIMATION: .................................................. 17
4. DISCUSSION ........................................................................................................ 18
4.1 THE CONFLICT BETWEEN THE OUTCOMES OF PHYLOGENETIC TREE AND DIVERGENCE TIME ESTIMATION: ......................................... 18
4.2 PHYLOGENY AND SYSTEMATICS: ................................................. 19
4.2.1 MAINLAND LINEAGE AND ITS CASE OF MICRO-ALLOPATRY: ....................................................................................... 19
4.2.2 ELEVATION PLAYS NO ROLE IN GENETIC VARIATION OF ASIAN COMMON TOAD: ...................................................................... 22
4.2.3 Duttaphynus melanostictus COULD BE A PARAPHYLETIC SPECIES:............................................................................................... 22
4.3 THE DISTINCTION OF ISLAND LINEAGE AND THE ASSOCIATION BETWEEN “ISLAND THEORY” AND INDONESIA’S PALEOGEOGRAPHY: 23
4.3.1 SCENARIO 1: CONSEQUENCES OF ISLAND COLONIZATION: 23
4.3.2 SCENARIO 2: THE EFFECT OF INDONESIA’S PALEOGEOGRAPHY ON ISLAND LINEAGE: ........................................ 24 4.3.3 SCENARIO 3: INDONESIA – THE ROOT OF D. melanostictus: .... 25
5. REFERENCES ...................................................................................................... 30
6. APPENDIX ............................................................................................................ 36
參考文獻 1. Zeng Z., Estes L., Ziegler A. D., Chen A., Searchinger T., Hua F., and Wood E. F., Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nature Geoscience, 2018: p. 1.
2. Emma Y., Biodiversity wipeout facing Southeast Asia. New Scientist, 23 July 2003.
3. WWF-Greater Mekong, Ecosystems in the Greater Mekong: past trends, current status, possible futures. 2013.
4. UNEP, Last stand of the orangutan: state of emergency: illegal logging, fire and palm oil in Indonesia’s national parks. 2007.
5. Butler R., Half of Indonesia’s deforestation occurs outside concession areas. 2005.
6. Sodhi N. S., Koh L. P., Brook B. W. and P. K. Ng., Southeast Asian biodiversity: an impending disaster. Trends in Ecology and Evolution, 2004. 19: p. 654-660.
7. Sodhi N. S., Koh L. P., Clements R., Wanger T. C., Hill J. K., Hamer K. C., and Lee T. M., Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biological Conservation, 2010. 143: p. 2375 - 2384.
8. Brook B.W., Sodhi N. S., and P. K. Ng., Catastrophic extinctions follow deforestation in Singapore. Nature, 2003. 424: p. 420 - 426.
9. Koh L.P., Levang P., and Ghazoul J., Designer landscapes for sustainable biofuels. Trends in Ecology and Evolution, 2009. 24: p. 431 - 438.
10. Turner I. M., Tan H. T. W., Wee Y. C., Ibrahim A. B., Chew P. T., and Corlett R. T., A study of plant species extinction in Singapore: lessons for the conservation of tropical biodiversity. Conservation Biology, 1994. 8: p. 705 - 712.
11. Tawatao N., Lucey J. M., Senior M., Benedick S., Khen C. V., Hill J. K., and Hamer K. C., Biodiversity of leaf-litter ants in fragmented tropical rainforests of Borneo: the value of publically and privately managed forest fragments. Biodiversity and Conservation, 2014. 23: p. 3113 - 3126.
12. Edwards D. P., Hodgson J. A., Hamer K. C., Mitchell S. L., Ahmad A. H., Cornell S. J., and Wilcove D. S., Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conservation Letters, 2010. 3: p. 236 - 242.
13. Linder H. P., Evolution of diversity: the Cape Flora. Trends Plant Sci, 2005. 10: p. 536-541.
14. Hewitt G., The genetic legacy of the quaternary ice ages. Nature, 2000. 405: p. 907 - 913.
15. Beebee T. J. C., Ecology and Conservation of Amphibians. Chapman & Hall: London, 1996.
16. Duellman W. E., and Trueb L., Biology of Amphibians. McGraw-Hill Publishing Co.: New York, 1986.
17. Inger R., Stuebing R. B., A field guide to the frogs of Borneo, 2nd edn. Malaysia: Natural History Publication (Borneo), 2005.
18. Kolby J. E., Ecology: stop Madagascar’s toad invasion now. Nature, 2014. 509: p. 563.
19. Van Dijk P. P., Duttaphrynus melanostictus. IUCN Red List of Threatened Species, 2004. Version 2012.2. IUCN.
20. Wogan G. O. U., Stuart B. L., Iskandar D. T. and McGuire J. A., Deep genetic structure and ecological divergence in a widespread human commensal toad. Biology Letters, 2016. 12(1).
21. Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Paabo S., Villablanca F. X., and Wilson A. C., Dynamics of mitochondrial DNA Evolution in animals: Amplification and sequencing with conserved primers. Nati. Acad. Sci. USA, 1989. 86: p. 6196-6200.
22. Untergasser A., Koressaar C. I. T., Ye J., Faircloth B. C., Remm M. and Rozen S. G., Primer3--new capabilities and interfaces. Nucleic Acids Res., 2012 Aug 1. 40(15):e115.
23. Ye J., C.G., Zaretskaya I., Cutcutache I., Rozen S., and Madden T., Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13:134., 2012.
24. Owczarzy R., T.A., and Wu Y., IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res., 2008. 36(Web Server issue):W163-9.
25. FinchTV 1.4.0 (Geospiza, Inc.; Seattle, WA, USA; http://www.geospiza.com).
26. Sudhir K. G. S., and Koichiro M., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Molecular Biology and Evolution (submitted). 2015.
27. Darriba D., T.G., Doallo R., and Posada D., jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 2012. 9(8).
28. Guindon S., D.J.F., Lefort V., Anisimova M., Hordijk W., and Gascuel O., New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 2010. 59(3): p. 307-321.
29. Huelsenbeck J. P. and Ronquist F., MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 2001. 17: p. 754-755.
30. Hepperle D., TreeMe©. A software for visualization, manipulation, layouting and labelling of phylogenetic trees. Win32-Version. Distributed by the author via: http://www.sequentix.de., 2004.
31. Swofford D. L., PAUP*: Phylogenetic Analysis Using Parsimony (and other methods) 4.0.b5. 2001.
32. Suchard M. A., Lemey P., Baele G., Ayres D. L., Drummond A. J. and Rambaut A., Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 2018. 4(vey016).
33. Peng Z., Liang D., Mao R. L., Hillis D. M., Wake D. B., and Cannatella, D. C., Efficient Sequencing of Anuran mtDNAs and a Mitogenomic Exploration of the Phylogeny and Evolution of Frogs. Molecular Biology and Evolution, 2013. 30(8): p. 1899-1915.
34. Rambaut A., Drummond A. J., Xie D., Baele G. and Suchard M. A., Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 2018(syy032).
35. Helfrich P., Rieb E., Abrami G., Lücking A. and Mehler A., TreeAnnotator: Versatile Visual Annotation of Hierarchical Text Relations. 2018.
36. Rambaut, A., FigTree v. 1.4.0. 2012.
37. Wogan G. O. U., Win H., Thin T., Lwin K. S., Shein A. K., Kyi S. W., and Tun H., A new species of Bufo (Anura: Bufonidae) from Myanmar (Burma), and redescription of the little known species Bufo stuarti Smith 1929. Proc. California Acad. Sci., 2003. 54: p. 141-153.
38. Kumar S., Molecular clocks: four decades of evolution. Nat. Rev. Genet, 2005. 6(8): p. 654 - 662.
39. Ayala F. J., Molecular clock mirages. BioEssays, 1999. 21(1): p. 71 - 75.
40. Schwartz J. H. and Maresca B., Do Molecular Clocks Run at All? A Critique of Molecular Systematics. Biological Theory, 2006. 1(4): p. 357 - 371.
41. General Statistics Office, Statistical Yearbook of Vietnam 2011. Statistical Publishing House, Hanoi, 2012.
42. Voris H. K., Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J. Biogeogr., 2000. 27: p. 1153-1167.
43. Alexander L. G., Lailvaux S. P., Pechmann J. H., and DeVries P. J., Effects of salinity on early life stages of the Gulf Coast Toad, Incilius nebulifer (Anura: Bufonidae). BioOne, Google Scholar, 2012: p. 106-114.
44. Johnson T. H., and Stattersfield A. J., A global review of island endemic birds. IBIS, 1990. 132: p. 167-180.
45. Frankham R., Do island populations have less genetic variation than mainland populations? Heredity, 1997. 78(3): p. 311-327.
46. Mckinney M. L., Extinction Vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. Syst., 1997. 28: p. 495-516.
47. Purvis A., Predicting extinction risk in declining species. Proc. R. Soc., 2000. 247(1456): p. 1947-1952.
48. Jones K. E., Biological correlates of extinction risk in bats. Am. Natural, 2003. 161(4): p. 601-614.
49. Hermisson J. and Pennings PS., Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics, 2005. 169(4): p. 2335-2352.
50. Barrett R. D. H. and Schluter D., Adaptation from standing genetic variation. Trends Ecol. Evol., 2007. 23(1): p. 38-44.
51. Messer P. W. and Petrov D. A., Population genomics of rapid adaptation by soft selective sweeps. rends Ecol. Evol., 2013. 28(11): p. 659-669.
52. Frankham R., Do population size bottlenecks reduce evolutionary potential? Anim. Conserv., 1999. 2: p. 255-260.
53. Briskie J. V. and Mackintosh M., Hatching failure increases with severity of population bottlenecks in birds. Proc. Natl. Acad. Sci., 2003. 101(2): p. 558-561.
54. James J. E., Lanfear R., and Eyre-Walker A., Molecular Evolutionary Consequences of Island Colonization. Genome Biology and Evolution, 2016. 8(6): p. 1876-1888.
55. Hall R., Southeast Asia′s changing palaeogeography. Blumea-Biodiversity, Evolution and Biogeography of Plants, 2009. 54(1-2): p. 148-161.
56. RI sits on Pacific "ring of fire" : official.
57. Crow M. J., Tertiary volcanicity. Geological Society London Memoir, 2005. 31(98-119).
58. Hall R. and Spakman W., Subducted slabs beneath the eastern Indonesia–Tonga region: insights from tomography. Earth and Planetary Science Letters, 2002. 201: p. 321-336.
59. Hutchison C. S., Bergman S. C., Swauger D. A., and Graves J. E., A Miocene collisional belt in North Borneo: uplift mechanism and isostatic adjustment quantified by thermochronology. Journal of the Geological Society of London, 2000. 157: p. 783-793.
60. Ninkovich D., Shackleton N. J., Abdel-Monem A. A., Obradovich J.D., Izett G., K−Ar age of the late Pleistocene eruption of Toba, north Sumatra. Nature., 7 December 1978. 276(5688): p. 574-577.
61. Jones S. C., Petraglia M. D., and Allchin, B. , The Toba Supervolcanic Eruption: Tephra-Fall Deposits in India and Paleoanthropological Implications The Evolution and History of Human Populations in South Asia. . Springer., 2007: p. 173-200.
62. Louys J., Limited effect of the Quaternary’s largest super-eruption (Toba) on land mammals from Southeast Asia. Quaternary Science Reviews, 2007. 26: p. 3108-3117.
63. Lande R., Genetics and demography in biological conservation. Science(Washington), 1988. 341(4872): p. 1455-1460.
64. Lynch M., Conery J., and Burger R., Mutation accumulation and the extinction of small populations. The American Naturalist, 1995. 146(4): p. 489-518.
65. Nater A., Nietlisbach P., Arora N., van Schaik C. P., van Noordwijk M. A., Willems E. P., Singleton I., Wich S. A., Goossens B., Warren K. S., Verschoor E. J., Perwitasari-Farajallah D., Pamungkas J. and Krutzen M., Sex-biased dispersal and volcanic activities shaped phylogeo-graphic patterns of extant orangutans (genus: Pongo). Molecular Biology and Evolution,, 2011. 28: p. 2275-2288.
66. Luo S. J., Kim J. H., and Johnson W. E., Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biology, 2004. 2(2275-2293).
67. Patou M. L., Wilting A., Gaubert P., Esselstyn J. A., Cruaud C., Jennings A. P., Fickel J. and Veron G., Evolutionary history of the Paradoxurus palm civets – a new model for Asian biogeography. Journal of Biogeography, 2010. 37: p. 2007-2097.
68. Wilting A., Christiansen P., Kitchener A. C., Kemp Y. J. M., Ambu L. and Fickel J., Geographical variation in and evolutionary history of the Sunda clouded leopard (Neofelis diardi) (Mammalia: Carnivora: Felidae) with the description of a new subspecies from Borneo. Molecular Phylogenetics and Evolution, 2011. 58: p. 317-328.
69. Hall R., nd Morley C. K., Sundaland basins. AGU Geophysical Monograph, 2004. 149: p. 55 - 85.
指導教授 劉阜果 審核日期 2019-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明