博碩士論文 105825005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.234.88.196
姓名 李子伶(Tzu-Ling Li)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 年輕與老年族群之控制化與自動化抑制交互影響的行為與事件相關電位特徵
(Characteristics in the Behavior and Event-related Potentials of the Interaction between Controlled and Automatic Inhibition in the Young and Elderly Groups)
相關論文
★ 作業轉換能力之訓練與轉移效果探討★ 全域型與局部型物體地標對人類空間巡行能力之貢獻
★ 兒童早期至晚期疼痛同理心的神經發展: 事件相關電位研究★ 同理心老化的認知神經機轉:功能性磁振造影研究
★ 動作參數對於選擇性抑制的影響★ 社會場景對於護理人員同理心之調控
★ 泛自閉症障礙症候群處理情緒人聲的不典型表現:腦電波研究★ 即時回饋類型對於雙手協調動作學習之影響
★ Diversity and Commonality of Cognitive Profile among Static, Strategic and Interceptive Sports-Expertise★ Application of a Brain Computer Interfacing System in Comparing Visual verses Haptic Induction of Motor Imaginary Task
★ An FMRI Investigation of Malleable Numerical Representation★ 動態照明在辦公環境應用之可行性評估與眼動儀偵測視覺疲勞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-1-30以後開放)
摘要(中) 抑制功能對控制行為至關緊要;而且它容易受到老化的影響。本研究進行了三項實驗來探討控制化和自動化抑制之間的交互作用在年輕和年長族群有何差異。實驗一採用以位置為基礎的負向促發 (Location-based Negative Priming) 作業,其中受試者需要對促發項 (prime) 與探測項 (probe) 中的目標物做按鍵反應。我操弄了促發項反應至探測項呈現間時距 (response to prime interval, RSI)以探索負向促發效果隨時間的演變以及其年齡差異;結果發現,不論是年輕族群還是年長族群,負向促發效果的時間演變在不同的RSI下保持穩定。然而相較於年輕族群,年長族群的最大負向促發效果發生的時間點較晚。在實驗二中,我將Go/Nogo作業與負向促發作業結合在促發項中:促發項中的目標物可能為白色或黃色,受試者只對白色目標物作反應;結果發現在年輕族群中促發項-探測項的組合為Go-Go時,其負向促發效果比Nogo-Go大得多;相對地,在年長族群中Go-go和Nogo-go之間的負向促發效果差異則不明顯。最後,在實驗三中,則是將Go/Nogo作業和負向促發作業結合在促發項與探測項中,並且使用事件相關電位 (ERP) 測量反應後的快速大腦活動變化;此時,行為資料顯示老年組Nogo-Go情況的負向促發效果大於其Go-Go情況,但這兩種情況的負向促發效果在年輕人中是相當的;在事件相關電位方面,我發現Nogo促發項導致N1振幅小於Go促發項,而Nogo探測項導致年輕人的N2振幅小於年長者的。綜上所述,我認為控制化抑制和自動化抑制會受到選擇注意力的調節而產生影響,而此調節之影響在年輕人身上較為明顯,可能反映選擇性注意力在老化過程中的衰退。
摘要(英) Inhibitory functions are crucial for keeping our behaviors under control, and it is prone to the influence of aging. In the current study, I carried out three experiments to explore the interaction between controlled and automatic inhibition in the young and elderly groups. In Experiment 1, I adopted a location negative priming (LNP) task where the participant responded to both the prime and the probe. I manipulated the duration between the response to prime and the probe onset (RSI) to explore the evolution of the NP effect across time and also compared age difference in the time course of NP. In Experiment 2, I combined Go/No-go task with LNP task where if the participant saw yellow target in the prime, the participant should not respond and vice versa. In Experiment 3, I combined Go/No-go and LNP task in both prime and probe, and measured brain activities with event-related potentials (ERP). I found that for both the young or elderly groups, the temporal evolvement of NP remained stable across RSIs. However, I found the maximal significant NP effect in the elderly occurred later relative to the young group. In addition, while the NP effect of Go-Go was much larger than Nogo-Go in the younger group, NP difference between Go and No-go was not significant for the elderly. Finally, in the ERP experiment, the behavioral data showed that the NP effect of Nogo-Go was larger than Go-Go prime in the elderly group but the NP effect of the two conditions were comparable in the young group. For the ERP results in both age groups, I found No-go prime resulted in the N1 smaller amplitude time-locked to the probe response as compared to that of the Go prime. No-go probe led to larger N2 amplitude in the young group but smaller amplitude in the elderly group. I conceptualize the results as the manifestation of selective attention on both the controlled and automatic inhibitory mechanisms, which is more obvious in the young than in the elderly group, reflecting the impact of aging on selective attention.
關鍵字(中) ★ 老化
★ 位置的負向促發作業
★ 選擇注意力抑制
關鍵字(英) ★ Aging
★ Location-based Negative Priming
★ Selective Attention Inhibition
論文目次 中文摘要 .................................................................................................................. ii Abstract ................................................................................................................... iii 誌謝..........................................................................................................................iv Content ...................................................................................................................... v Figure of content.....................................................................................................vii Table of content....................................................................................................... ix Chapter 1 Introduction..............................................................................................1
Cognitive Aging and Inhibitory Functions .....................................................................1 Controlled Inhibition and Automatic inhibition ............................................................3 Go/No-go task and Aging ................................................................................................5 Negative priming and Aging ...........................................................................................8 Aims of the current study..............................................................................................11
Chapter 2 Experiment 1: Aging-related Changes in the Temporal Dynamics of Location-based Negative Priming ...........................................................................13
Material and methods ............................................................................................14
Participants ............................................................................................................................. 14 Stimuli and apparatus .............................................................................................................. 15 Procedure................................................................................................................................ 15
Results ...........................................................................................................................16
Discussion ......................................................................................................................20
Chapter 3 Experiment 2: Effects of Aging on Controlled and Automatic Inhibitory Processing ...............................................................................................................22
Material and methods ...................................................................................................23
Participants ............................................................................................................................. 23
v
Stimuli and apparatus .............................................................................................................. 23 Procedure................................................................................................................................ 23
Results ...........................................................................................................................24
Discussion .....................................................................................................................28
Chapter 4 Experiment 3: The Brain Dynamics of the Interaction between Automatic and Controlled Inhibition in Different Age Groups...............................30
Material and methods..................................................................................................30
Participants ............................................................................................................................ 30 Stimuli and apparatus ............................................................................................................ 31 EEG recording ....................................................................................................................... 32 EEG pre-processing...............................................................................................................32 ERP analysis..........................................................................................................................33
Results ...........................................................................................................................34
Discussion .....................................................................................................................55
Chapter 5 General Discussion and Conclusions .....................................................58 References ...............................................................................................................63 Appendix .................................................................................................................72
Appendix A: Mini-Mental State Examination (MMSE) ..............................................72
Appendix B: Digit Span Forward and Digit symbol coding tasks in the Wechsler Adult Intelligence Scale-Third Edition.........................................................................73
參考文獻 Abroms, B. D., Gottlob, L. R., & Fillmore, M. T. (2006). Alcohol effects on inhibitory control of attention: distinguishing between intentional and automatic mechanisms. Psychopharmacology, 188(3), 324-334.
Allport, D. A., Tipper, S. P., & Chmiel, N. (1984). Perceptual integration and post-categorical filtering.
Amieva, H., Phillips, L. H., Della Sala, S., & Henry, J. D. (2004). Inhibitory functioning in Alzheimer’s disease. Brain, 127(5), 949-964.
Amso, D., & Johnson, S. P. (2005). Selection and inhibition in infancy: Evidence from the spatial negative priming paradigm. Cognition, 95(2), B27-B36.
Andrés, P., Guerrini, C., Phillips, L. H., & Perfect, T. J. (2008). Differential effects of aging on executive and automatic inhibition. Developmental Neuropsychology, 33(2), 101-123.
Barras, C., & Kerzel, D. (2016). Nogo Stimuli Do Not Receive More Attentional Suppression or Response Inhibition than Neutral Stimuli: Evidence from the N2pc, PD, and N2 Components in a Spatial Cueing Paradigm. Frontiers in psychology, 7, 630.
Bauer, E., Gebhardt, H., Gruppe, H., Gallhofer, B., & Sammer, G. (2012). Altered negative priming in older subjects: first evidence from behavioral and neural level. Frontiers in human neuroscience, 6, 270.
Behrendt, J., Gibbons, H., Schrobsdorff, H., Ihrke, M., Herrmann, J. M., & Hasselhorn, M. (2010). Event‐related brain potential correlates of identity negative priming from overlapping pictures. Psychophysiology, 47(5), 921-930.
Bialystok, E., Craik, F. I., & Luk, G. (2012). Bilingualism: consequences for mind and brain. Trends in cognitive sciences, 16(4), 240-250.
Bokura, H., Yamaguchi, S., Matsubara, M., & Kobayashi, S. (2002). Frontal lobe contribution to response inhibition process—an ERP study and aging effect. Paper presented at the International Congress Series.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological review, 108(3), 624.
Bruin, K., & Wijers, A. (2002). Inhibition, response mode, and stimulus probability: a comparative event-related potential study. Clinical Neurophysiology, 113(7), 1172-1182.
Bruin, K., Wijers, A., & Van Staveren, A. (2001). Response priming in a go/nogo task: do I have to explain the go/nogo N2 effect in terms of response activation instead of inhibition? Clinical Neurophysiology, 112(9), 1660-1671.
Buchner, A., Zabal, A., & Mayr, S. (2003). Auditory, visual, and cross-modal negative priming. Psychonomic Bulletin & Review, 10(4), 917-923.
Bugg, J. M., & Head, D. (2011). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of aging, 32(3), 506-514.
Chao, H.-F. (2011). Dissociations between identity and location negative priming. Acta psychologica, 136(1), 81-89.
Chao, H.-F., & Yeh, Y.-Y. (2005). Location negative priming in identity discrimination relies on location repetition. Perception & psychophysics, 67(5), 789-801.
Choi, I., Wang, L., Bharadwaj, H., & Shinn-cunningham, B. (2014). Individual differences in attentional modulation of cortical responses correlate with selective attention performance. Hearing Research, 314, 10–19.
Collette, F., Germain, S., Hogge, M., & Van der Linden, M. (2009). Inhibitory control of memory in normal ageing: Dissociation between impaired intentional and preserved unintentional processes. Memory, 17(1), 104-122.
Connelly, S. L., & Hasher, L. (1993). Aging and the inhibition of spatial location. Journal of Experimental Psychology: Human Perception and Performance, 19(6), 1238.
Conway, A. R., Tuholski, S. W., Shisler, R. J., & Engle, R. W. (1999). The effect of memory load on negative priming: An individual differences investigation. Memory & cognition, 27(6), 1042-1050.
Craik, F. I., & Bialystok, E. (2006). Cognition through the lifespan: mechanisms of change. Trends in cognitive sciences, 10(3), 131-138.
Dalrymple-Alford, E., & Budayr, B. (1966). Examination of some aspects of the Stroop color-word test. Perceptual and motor skills, 23(3_suppl), 1211-1214.
de Zubicaray, G., McMahon, K., Eastburn, M., Pringle, A., & Lorenz, L. (2006). Classic identity negative priming involves accessing semantic representations in the left anterior temporal cortex. Neuroimage, 33(1), 383-390.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual review of neuroscience, 18(1), 193-222.
Di Russo, F., Martínez, A., & Hillyard, S. A. (2003). Source analysis of event-related cortical activity during visuo-spatial attention. Cerebral cortex, 13(5), 486-499.
Donkers, F. C., & Van Boxtel, G. J. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and cognition, 56(2), 165-176.
Enriquez-Geppert, S., Konrad, C., Pantev, C., & Huster, R. J. (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. Neuroimage, 51(2), 877-887.
Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta psychologica, 101(2-3), 267-291.
Folstein, J. R., Van Petten, C., & Rose, S. A. (2008). Novelty and conflict in the categorization of complex stimuli. Psychophysiology, 45(3), 467-479.
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of psychiatric research, 12(3), 189-198.
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. Journal of experimental psychology: General, 133(1), 101.
Garavan, H., Ross, T., & Stein, E. (1999). Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proceedings of the National Academy of Sciences, 96(14), 8301-8306.
Gibbons, H. (2009). Functional brain‐electrical correlates of negative priming in the flanker task: Evidence for episodic retrieval. Psychophysiology, 46(4), 807-817.
Gibbons, H., Rammsayer, T. H., & Stahl, J. (2006). Multiple sources of positive-and negative-priming effects: An event-related potential study. Memory & cognition, 34(1), 172-186.
Hanslmayr, S., Pastötter, B., Bäuml, K.-H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20(2), 215-225.
Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646-648.
Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age.
Hasher, L., Zacks, R. T., Stoltzfus, E. R., Kane, M. J., & Connelly, S. L. (1996). On the time course of negative priming: Another look. Psychonomic Bulletin & Review, 3(2), 231-237.
Hedden, T., & Gabrieli, J. D. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nature reviews neuroscience, 5(2), 87.
Hong, X., Wang, Y., Sun, J., Li, C., & Tong, S. (2017). Segregating Top-Down Selective Attention from Response Inhibition in a Spatial Cueing Go/NoGo Task: An ERP and Source Localization Study. Scientific reports, 7(1), 9662.
Horváth, J., Czigler, I., Birkás, E., Winkler, I., & Gervai, J. (2009). Age-related differences in distraction and reorientation in an auditory task. Neurobiology of Aging, 30(7), 1157-1172.
Ihrke, M., Behrendt, J., Schrobsdorff, H., Herrmann, J. M., & Hasselhorn, M. (2011). Response-retrieval and negative priming. Experimental psychology.
Johnstone, S. J., Pleffer, C. B., Barry, R. J., Clarke, A. R., & Smith, J. L. (2005). Development of inhibitory processing during the go/nogo task. Journal of Psychophysiology, 19(1), 11-23.
Kaiser, S., Weiss, O., Hill, H., Markela-Lerenc, J., Kiefer, M., & Weisbrod, M. (2006). N2 event-related potential correlates of response inhibition in an auditory Go/Nogo task. International Journal of Psychophysiology, 61(2), 279-282.
Kathmann, N., Bogdahn, B., & Endrass, T. (2006). Event-related brain potential variations during location and identity negative priming. Neuroscience letters, 394(1), 53-56.
Kropotov, J., Ponomarev, V., Tereshchenko, E. P., Müller, A., & Jäncke, L. (2016). Effect of aging on ERP components of cognitive control. Frontiers in aging neuroscience, 8, 69.
Leung, K.-K., Lee, T. M., Xiao, Z., Wang, Z., Zhang, J. X., Yip, P. S., & Li, L. S. (2008). Neural activities for negative priming with affective stimuli: An fMRI study. Neuroscience letters, 433(3), 194-198.
Li, G., Wang, S., Duan, Y., & Zhu, Z. (2013). Perceptual conflict-induced late positive complex in a modified Stroop task. Neuroscience letters, 542, 76-80.
Li, S.-C. (2003). Biocultural orchestration of developmental plasticity across levels: The interplay of biology and culture in shaping the mind and behavior across the life span. Psychological Bulletin, 129(2), 171.
Liddle, P. F., Kiehl, K. A., & Smith, A. M. (2001). Event‐related fMRI study of response inhibition. Human brain mapping, 12(2), 100-109.
Liotti, M., Woldorff, M. G., Perez III, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5), 701-711.
Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological review, 91(3), 295.
Lucci, G., Berchicci, M., Spinelli, D., Taddei, F., & Di Russo, F. (2013). The effects of aging on conflict detection. PloS one, 8(2), e56566.
MacLeod, C. M., Dodd, M. D., Sheard, E. D., Wilson, D. E., & Bibi, U. (2003). In opposition to inhibition. Psychology of learning and motivation, 43, 163-215.
Maguire, M. J., Brier, M. R., Moore, P. S., Ferree, T. C., Ray, D., Mostofsky, S., . . . Kraut, M. A. (2009). The influence of perceptual and semantic categorization on inhibitory processing as measured by the N2–P3 response. Brain and cognition, 71(3), 196-203.
Makeig, S., Bell, T., Lee, T., Jung, T., & Enghoff, S. (2000). EEGLAB: ICA toolbox for psychophysiological research. WWW Site, Swartz Center for Computational Neuroscience, Institute of Neural Computation, University of San Diego California< www. sccn. ucsd. edu/eeglab.
Mayr, S., Buchner, A., & Dentale, S. (2009). Prime retrieval of motor responses in negative priming. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 408.
McDowd, J. M., Oseas-Kreger, D. M., & Filion, D. L. (1995). Inhibitory processes in cognition and aging. In Interference and inhibition in cognition (pp. 363-400): Elsevier.
Neill, W. T. (1977). Inhibitory and facilitatory processes in selective attention. Journal of Experimental Psychology: Human Perception and Performance, 3(3), 444.
Neill, W. T., Valdes, L. A., Terry, K. M., & Gorfein, D. S. (1992). Persistence of negative priming: II. Evidence for episodic trace retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 993.
Neill, W. T., & Westberry, R. L. (1987). Selective attention and the suppression of cognitive noise. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(2), 327.
Nieuwenhuis, S., Yeung, N., Van Den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cognitive, affective, & behavioral neuroscience, 3(1), 17-26.
Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychological bulletin, 126(2), 220.
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in cognitive sciences, 16(5), 292-305.
Papenberg, G., Ferencz, B., Mangialasche, F., Mecocci, P., Cecchetti, R., Kalpouzos, G., . . . Bäckman, L. (2016). Physical activity and inflammation: effects on gray‐matter volume and cognitive decline in aging. Human brain mapping, 37(10), 3462-3473.
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and aging, 17(2), 299.
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49-65.
Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of neuroscience methods, 162(1-2), 8-13.
Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. Electroencephalography and clinical neurophysiology, 60(5), 423-434.
Pires, L., Leitão, J., Guerrini, C., & Simões, M. R. (2014). Event-related brain potentials in the study of inhibition: cognitive control, source localization and age-related modulations. Neuropsychology review, 24(4), 461-490.
Quednow, B. B., Kometer, M., Geyer, M. A., & Vollenweider, F. X. (2012). Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology, 37(3), 630.
Ramautar, J., Kok, A., & Ridderinkhof, K. (2006). Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm. Biological psychology, 72(1), 96-109.
Raichle, M. E. (1998). Event-related brain potentials in the study of visual, 95(February), 781–787.
Rey-Mermet, A., Gade, M., & Oberauer, K. (2017). Should I stop thinking about inhibition? Searching for individual and age differences in inhibition ability.
Ridderinkhof, K. R., Band, G. P., & Logan, G. D. (1999). A study of adaptive behavior: Effects of age and irrelevant information on the ability to inhibit one′s actions. Acta psychologica, 101(2-3), 315-337.
Roche, R. A., Garavan, H., Foxe, J. J., & O’Mara, S. M. (2005). Individual differences discriminate event-related potentials but not performance during response inhibition. Experimental Brain Research, 160(1), 60-70.
Ruge, H., & Naumann, E. (2006). Brain-electrical correlates of negative location priming under sustained and transient attentional context conditions. Journal of Psychophysiology, 20(3), 160-169.
Rush, B. K., Barch, D. M., & Braver, T. S. (2006). Accounting for cognitive aging: context processing, inhibition or processing speed? Aging, Neuropsychology, and Cognition, 13(3-4), 588-610.
Raichle, M. E. (1998). Event-related brain potentials in the study of visual, 95(February), 781–787.
Saling, L. L., & Phillips, J. (2007). Automatic behaviour: efficient not mindless. Brain research bulletin, 73(1-3), 1-20.
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological review, 103(3), 403.
Shen, L., Chepelev, I., Liu, J., & Wang, W. (2010). Prediction of quantitative phenotypes based on genetic networks: a case study in yeast sporulation. BMC systems biology, 4(1), 128.
Simone, P. M., & Mccormick, E. B. (1999). Effect of a defining feature on negative priming across the life span. Visual Cognition, 6(5), 587-606.
Smith, J. L., Jamadar, S., Provost, A. L., & Michie, P. T. (2013). Motor and non-motor inhibition in the Go/NoGo task: an ERP and fMRI study. International Journal of Psychophysiology, 87(3), 244-253.
Smith, J. L., Johnstone, S. J., & Barry, R. J. (2008). Movement-related potentials in the Go/NoGo task: the P3 reflects both cognitive and motor inhibition. Clinical Neurophysiology, 119(3), 704-714.
Stahl, J., & Gibbons, H. (2007a). Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task. Clinical Neurophysiology, 118(3), 581-596.
Stahl, J., & Gibbons, H. (2007b). Event-related brain potentials support episodic-retrieval explanations of flanker negative priming. Experimental Brain Research, 181(4), 595-606.
Steel, C., Haworth, E., Peters, E., Hemsley, D., Sharma, T., Gray, J., . . . Bullmore, E. (2001). Neuroimaging correlates of negative priming. Neuroreport, 12(16), 3619-3624.
Strik, W., Fallgatter, A., Brandeis, D., & Pascual-Marqui, R. (1998). Three-dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 108(4), 406-413.
Team, J. (2018). JASP (Version 0.9. 0.1)[Computer software]. In: Amsterdam.
Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37(4), 571-590.
Tipper, S. P., Brehaut, J. C., & Driver, J. (1990). Selection of moving and static objects for the control of spatially directed action. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 492.
Tipper, S. P., & Cranston, M. (1985). Selective attention and priming: Inhibitory and facilitatory effects of ignored primes. The Quarterly Journal of Experimental Psychology, 37(4), 591-611.
Tipper, S. P., Weaver, B., Cameron, S., Brehaut, J. C., & Bastedo, J. (1991). Inhibitory mechanisms of attention in identification and localization tasks: time course and disruption. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(4), 681.
Tipper, S. P., Weaver, B., & Houghton, G. (1994). Behavioural goals determine inhibitory mechanisms of selective attention. The Quarterly Journal of Experimental Psychology Section A, 47(4), 809-840.
Tipper, S. P. (2001). The Quarterly Journal of Experimental Psychology Section A : Human Experimental Psychology Does negative priming reflect inhibitory mechanisms ? A review and integration of conflicting views, (July 2013), 37–41.
Ungar, L., Nestor, P. G., Niznikiewicz, M. A., Wible, C. G., & Kubicki, M. (2010). Color Stroop and negative priming in schizophrenia: an fMRI study. Psychiatry Research: Neuroimaging, 181(1), 24-29.
Vallesi, A. (2011). Targets and non-targets in the aging brain: a go/nogo event-related potential study. Neuroscience letters, 487(3), 313-317.
Vallesi, A., Stuss, D. T., McIntosh, A. R., & Picton, T. W. (2009). Age-related differences in processing irrelevant information: evidence from event-related potentials. Neuropsychologia, 47(2), 577-586.
Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2005). On the difference between response inhibition and negative priming: Evidence from simple and selective stopping. Psychological research, 69(4), 262-271.
Vuilleumier, P., Schwartz, S., Duhoux, S., Dolan, R. J., & Driver, J. (2005). Selective attention modulates neural substrates of repetition priming and “implicit” visual memory: suppressions and enhancements revealed by FMRI. Journal of Cognitive Neuroscience, 17(8), 1245-1260.
Wechsler, D. (1997). WAIS-III, Wechsler adult intelligence scale: Administration and scoring manual: Psychological Corporation.
West, R., & Alain, C. (1999). Event-related neural activity associated with the Stroop task. Cognitive Brain Research, 8(2), 157-164.
Yonelinas, A. P., & Jacoby, L. L. (1995). Dissociating automatic and controlled processes in a memory-search task: Beyond implicit memory. Psychological research, 57(3-4), 156-165.
Zacks, R. T., & Hasher, L. (1988). Capacity theory and the processing of inferences. Language, memory, and aging, 154-170.
Zoccatelli, G., Beltramello, A., Alessandrini, F., Pizzini, F. B., & Tassinari, G. (2010). Word and position interference in Stroop tasks: a behavioral and fMRI study. Experimental Brain Research, 207(1-2), 139-147.
指導教授 張智宏(Erik Chang) 審核日期 2019-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明