博碩士論文 105825602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:52.14.224.197
姓名 瑞按卡(Andhika Renaldi)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱
(The Characteristics and Neurophysiological Correlates of Componential Visual Statistical Learning)
相關論文
★ The influence of experience on the SNARC effect -the mapping between sequential information and spatial representation★ 中文名詞動詞的具體效果的神經相關活動
★ 字形和語意對短期記憶的影響: 從行為及腦造影實驗而來的證據★ 中文字音與字形相似度對語言短期記憶之影響
★ 非語音訊息對中英雙語使用者的語言短期記憶的貢獻★ 中文短期記憶之字形表徵研究
★ The temporal dynamics of the code-switching between alphabetic and logographic languages in unbalancedChinese-English bilinguals★ The acquisition of Chinese literacy as a second language correlates with statistical learning of implicit transitional probability
★ 以行為及腦造影證據探討英文字音及字形相似效果對中英雙語使用者之短期記憶的影響★  The behavioral and neural correlates of orthographic lexicon and orthographic buffer in Chinese writing
★ How the Brain Deals with the Asymmetry between Chinese Subject and Object Relative Clauses: Support for a Dynamic Processing Theory★ EXPLORATION OF THE NEURAL CORRELATES OF SYNTACTIC PROCESSING IN CHINESE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING AND EVENT-RELATED POTENTIALS
★ 視知覺相關能力以及統計學習能力對中文識字學習的影響:來自以中文為母語或外語學習者的證據★ Correlation of statistical learning of different implicit transitional probabilities with Chinese literacy acquisition in non-native adult learners
★ 字形相似性、字義相似性以及視覺相似性對於中文工作記憶的影響★ 金錢酬賞之來源與其分配對公平性感知的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 先前的研究結果顯示,統計學習與其他認知能力不同,並且與語言習得和熟練程度有關。然而,過往研究統計學習的研究,多使用接續出現在時間序列中、具有規則性的刺激材料,和拼音文字系統的構字規則較為相似。目前文獻中用來研究統計學習的實驗派典,並沒有利用和非拼音文字系統(如:中文)較為相似之刺激材料,因此統計學習和語言處理之間的關係,是否能在此類測驗中獲得支持,仍有待確定。此外,許多關於統計學習的研究使用了語言刺激材料,而過往研究已有證據指出對這些刺激材料的處理會受到人們語言經驗的影響。有鑑於此,我們需要開發一種新的統計學習測驗,採用非語言刺激、並仿照中文文字系統的特徵,以利有效地檢驗統計學習能力與中文閱讀能力之間的關係。
在本研究中,我們開發了新的”成分規則之視覺統計學習”(Componential Visual Statistical Learning,C-VSL)測驗,並以行為實驗(實驗一和二)和神經電生理學實驗(實驗三)探索此測驗的特徵。具體而言,在時間版本和空間版本的C-VSL測驗中,非語言形式的形狀分別以接續呈現以及同時呈現的方式成對出現:在學習階段,某些形狀總是出現在時序或者空間配對中的特定位置,而同一配對中的另一個形狀則非特定的形狀;在測試階段,每個在學習階段出現過的形狀會與之前沒有遇過的新形狀配對,出現在和學習階段相同或相異的位置。實驗參與者對於時間和空間版本C-VSL測驗中刺激材料之位置規則性的敏感度,則透過測試階段的熟悉度判斷和再認作業來測量。同時,實驗一和二測量參與者的基本認知能力,包括智商(IQ)和言語/非語言工作記憶,以及他們在使用視覺和聽覺刺激材料的序列統計學習測驗中的表現,以研究這些表現與C-VSL能力間的相關性。此外,實驗一和實驗二的參與者包括拼音文字系統和非拼音文字系統(中文)的母語使用者,因此我們在實驗二中利用標準詞彙判斷作業測量這些參與者對中文構字規則的敏感度,也測量所有參與者對非母語的熟練程度,以探索識字能力和成分規則之視覺統計學習能力對彼此的效果。在實驗三中,我們使用ERP研究工具,試圖找出和時序、空間之成分位置規則性敏感度相關的神經機制。
本研究的實驗結果顯示,我們新開發的C-VSL測驗能夠有效地測量實驗參與者對時序和空間刺激材料中位置規則性的敏感度;儘管這兩種敏感度彼此具有顯著的相關性,但這些能力與序列統計學習測驗或IQ測驗的分數並無顯著的相關。此外,拼音文字系統的讀者在兩種C-VSL測驗和序列統計學習測驗中的表現,與他們對中文構字規則的掌握程度有關;這與我們實驗室先前所觀察到的結果一致,支持統計學習能力與識字習得歷程之間的關係。另一方面,在以中文為母語的實驗參與者身上,沒有觀察到任何統計學習測驗的表現與其語言表現間的相關,這可能是由於這些參與者在語言測驗中的得分沒有太大變異性。至於和成分位置規則敏感度相關的神經機制,我們發現腦電波中的N400和MMN效果分別和時序及空間中的此類統計學習能力有關,這些結果也與之前的事件相關電位文獻一致。
總結來說,我們成功地開發了新的統計學習測驗(即C-VSL),可用於測量實驗參與者對非語言刺激材料在時序和空間配對中之位置規則性的敏感度,而這樣的能力並不同於在先前文獻中常被檢視的序列統計學習能力。儘管在時間和空間C-VSL測驗中所測量到的行為表現之間存在高度相關性,但腦電波實驗結果顯示這兩種能力受到不同神經機制的支持。透過本研究所開發出的C-VSL測驗,學者可在未來研究中進一步探討統計學習能力與中文閱讀能力之間的關係。
摘要(英) Previous findings have shown that statistical learning (SL) is distinct from other cognitive abilities, and is related to language acquisition and proficiency. However, the close relationship between SL and language processing is mainly supported by the findings from tests that require extraction of regularity embedded within temporal arrays, which are similar to alphabetic writing systems. Whether such relationship can be identified in tests whose stimuli are similar to non-alphabetic writing systems, such as Chinese, remains to be determined. Furthermore, a significant proportion of the research on SL had used verbal stimuli, which have been shown to be under the influence of people’s language experience. To investigate the relationship between SL and Chinese literacy optimally, there is a need to create and to validate a new SL test that employs non-verbal stimuli to resemble the characteristics of Chinese orthography.
In the present study, we developed novel componential visual SL (C-VSL) tests, and examined their characteristics in behavioral (Experiment 1 and 2) and neurophysiological (Experiment 3) experiments. Specifically, in the temporal and spatial C-VSL tests two nonverbal shapes were presented in sequential and simultaneous pairs, respectively. In the study phase, each shape always appeared in a specific position in the temporal or spatial pair, while the other shape in the same pair was not specific or unique. In the test phase, each shape encountered in the study phase, either in the same or different position as in the study phase, was paired with a novel shape that was not encountered before. Participants’ sensitivity to the stimulus positional regularity in the temporal and spatial C-VSL tests was measured by familiarity judgment and recognition in the test phase. In Experiment 1 and 2, participants’ basic cognitive abilities, including IQ and verbal/nonverbal working memory, and their performance in the conventional SL tests in both the visual and auditory modalities were measured to investigate their correlation with the C-VSL abilities. In addition, we recruited alphabetic and logographic readers for both Experiment 1 and 2, and in Experiment 2 further measured their sensitivity to Chinese orthography in a standard lexical decision task, as well as their proficiency to a non-native language, to explore the effects of literacy and C-VSL abilities on each other. In Experiment 3, the neural correlates of the sensitivity to the temporal and spatial componential regularity were identified using the ERP methodology.
The results showed that the newly developed temporal and spatial C-VSL tests are valid in measuring participants’ sensitivity to positional dependency. The behavioral accuracies in the temporal and spatial C-VSL tests correlated with each other but not with the performance in the conventional SL tests or with IQ. Consistent with the previous results from our laboratory, alphabetic readers’ performance in the tests of sequential VSL, temporal C-VSL, and spatial C-VSL correlated with their knowledge of novel Chinese orthography, supporting the relationship between SL and literacy acquisition. On the other hand, performance of none of the SL tests correlated with the language performance reliably in Taiwanese participants, possibly due to the low variability in their scores in the linguistic tests. As for the neurophysiological correlates of the performance in the temporal and spatial C-VSL tests, a significant N400 component and a sparse MMN component were identified, respectively. These results are generally in line with the previous ERP literature.
In summary, we have successfully developed SL tests that measure participants’ sensitivity to positional regularity presented in temporal and spatial pairs of nonverbal stimuli. The abilities measured in the C-VSL tests is distinct from the abilities measured in the sequential SL tests that are commonly employed in the previous literature. Despite the high correlation between the abilities measured in the temporal and spatial C-VSL tests, the ERP results suggest that these two abilities are subserved by distinct neural mechanisms. Based on the C-VSL tests developed in the present study, the relationship between SL and Chinese literacy can be explored further in future research.
關鍵字(中) ★ 成分規則之視覺統計學習
★ 位置規則性
★ 閱讀
★ 事件相關電位
關鍵字(英) ★ componential visual statistical learning
★ positional regularity
★ literacy
★ ERP
論文目次 Table of Contents
中文摘要 .......... …………………………………………………………………………………...v
English Abstract.....……………………………………………………………………… ........... vii
Acknowledgement.………………………………………………………………………… ......... x
Table of Contents ................................ ................................ ................................ .......................... xii
List of Figures ................................ ................................ ................................ ............................... xvi
List of Tables ................................ ................................ ................................ ............................. xviii
Chapter 1: Introduction ................................ ................................ ................................ .................... 1
1.1 Domain Generality and Domain Specificity of SL ................................ ............................... 1
1.1.1 SL of contingency in different modalities. ................................ ................................ ....... 1
1.1.2 SL of contingency in verbal and non-verbal stimuli. ................................ ....................... 2
1.1.3 SL of adjacency and nonadjacent contingency. ................................ ................................ 3
1.1.4 SL of temporal and spatial contingency. ................................ ................................ ........... 5
1.1.5 SL and basic cognitive abilities. ................................ ................................ ....................... 7
1.1.6 Individual differences in SL. ................................ ................................ ............................ 7
1.2 The Relationship between SL and Reading Performance ................................ ..................... 8
1.2.1 The effects of SL on reading performance. ................................ ................................ .... 10
1.2.2 The effects of reading performance on SL. ................................ ................................ .... 12
1.3 Neural Correlates of SL ................................ ................................ ................................ ...... 15
1.3.1 Neurophysiological evidence of SL. ................................ ................................ .............. 15
1.3.2 Neuroanatomical correlates of SL. ................................ ................................ ................. 20
1.4 Summary and Aims of the Present Study ................................ ................................ ............ 21
Chapter 2: Experimental Tests ................................ ................................ ................................ ....... 24
2.1 Componential Visual Statistical Learning (C-VSL) Tests ................................ .................. 24
2.1.1 Temporal C-VSL. ................................ ................................ ................................ ........... 24
2.1.2 Spatial C-VSL................................. ................................ ................................ ................ 26
2.2 Basic Cognitive Tests ................................ ................................ ................................ .......... 27
2.2.1 WAIS block design. ................................ ................................ ................................ ........ 27
2.2.2 Symmetry span. ................................ ................................ ................................ .............. 28
2.2.3 Forward digit span. ................................ ................................ ................................ ......... 29
2.3 Language Proficiency Tests ................................ ................................ ................................ 29
2.3.1 Chinese character size test. ................................ ................................ ............................. 29
2.3.2 Chinese visual lexical decision test (LDT). ................................ ................................ .... 30
2.3.3 English multilingual naming (MiNT) test. ................................ ................................ ..... 31
2.4 Conventional Sequential SL Tests ................................ ................................ ....................... 31
2.4.1 Sequential visual statistical learning (VSL) test. ................................ ............................ 31
2.4.2 Sequential auditory statistical learning (ASL) test. ................................ ........................ 32
Chapter 3: Experiment 1 ................................ ................................ ................................ ................ 34
3.1 Methods ................................ ................................ ................................ ............................... 34
3.1.1 Participants. ................................ ................................ ................................ .................... 34
3.1.2 Design and stimuli. ................................ ................................ ................................ ......... 35
3.1.3 Procedure. ................................ ................................ ................................ ....................... 35
3.2 Results ................................ ................................ ................................ ................................ . 35
3.2.1 Comparisons of test performance between participant groups. ................................ ...... 35
3.2.2 Correlation analysis of independent and dependent variables. ................................ ....... 36
3.2.3 ANOVA of study variables. ................................ ................................ ............................ 37
3.3 Discussions ................................ ................................ ................................ .......................... 38
Chapter 4: Experiment 2 ................................ ................................ ................................ ................ 42
4.1 Methods ................................ ................................ ................................ ............................... 42
4.1.1 Participants. ................................ ................................ ................................ .................... 42
4.1.2 Design and stimuli. ................................ ................................ ................................ ......... 43
4.1.3 Procedure. ................................ ................................ ................................ ....................... 43
4.2 Results ................................ ................................ ................................ ................................ . 44
4.2.1 Comparisons of test performance between participant groups. ................................ ...... 44
4.2.2 Correlation analysis of independent variables and improvement of Chinese proficiency. ................................ ................................ ................................ ..................... 46
4.2.3 ANOVA of study variables. ................................ ................................ ............................ 52
4.3 Discussions ................................ ................................ ................................ .......................... 53
Chapter 5: Experiment 3 ................................ ................................ ................................ ................ 61
5.1 Methods ................................ ................................ ................................ ............................... 61
5.1.1 Participants. ................................ ................................ ................................ .................... 61
5.1.2 Design and stimuli. ................................ ................................ ................................ ......... 62
5.1.3 Apparatus. ................................ ................................ ................................ ....................... 63
5.1.4 Procedure. ................................ ................................ ................................ ....................... 64
5.2 Data Processing ................................ ................................ ................................ ................... 64
5.3 Results ................................ ................................ ................................ ................................ . 65
5.3.1 Behavioral results. ................................ ................................ ................................ .......... 66
5.3.2 ERP results. ................................ ................................ ................................ ..................... 67
5.4 Discussions ................................ ................................ ................................ .......................... 81
Chapter 6: General Discussions ................................ ................................ ................................ ..... 85
6.1 The Validity and Reliability of the C-VSL Tests ................................ ................................ 85
6.2 The Temporal and Spatial C-VSL Ability in Readers of Different Orthographies ............. 86
6.3 The Relationship between SL and Alphabetic and Orthographic Reading Proficiency ..... 88
6.4 The Relationship between SL and Basic Cognitive Abilities ................................ ............. 89
6.5 The Domain General or Domain Specific Aspect of C-VSL Ability ................................ .. 90
6.6 Neurophysiological Correlates of the Temporal and Spatial C-VSL Abilities ................... 90
6.7 Limitations of the Current Research and Directions for the Future Research .................... 91
6.8 Conclusions ................................ ................................ ................................ ......................... 91
References .................................................................................................................................... 93
參考文獻 Abla, D., Katahira, K., & Okanoya, K. (2008). On-line assessment of statistical learning by event-related potentials. Journal of Cognitive Neuroscience, 20(6), 952-964.
Abla, D., Okanoya, K. (2009). Visual statistical learning of shape sequences: An ERP study. Neuroscience research, 64(2), 185-190.
Ahissar, M. (2007). Dyslexia and the anchoring-deficit hypothesis. Trends in cognitive sciences, 11(11), 458-465.
Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and adults. Cognitive science, 36(2), 286-304.
Cassar, M., & Treiman, R. (1997). The beginnings of orthographic knowledge: Children′s knowledge of double letters in words. Journal of Educational Psychology, 89(4), 631.
Chetail, F. (2017). What do we do with what we learn? Statistical learning of orthographic regularities impacts written word processing. Cognition, 163, 103-120.
Christiansen, M. H., Conway, C. M., & Onnis, L. (2012). Similar neural correlates for language and sequential learning: Evidence from event-related brain potentials. Language and cognitive processes, 27(2), 231-256.
Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 24.
Conway, C. M., & Christiansen, M. H. (2009). Seeing and hearing in space and time: Effects of modality and presentation rate on implicit statistical learning. European Journal of Cognitive Psychology, 21(4), 561-580.
Cunillera, T., Càmara, E., Toro, J. M., Marco-Pallares, J., Sebastián-Galles, N., Ortiz, H., ... & Rodríguez-Fornells, A. (2009). Time course and functional neuroanatomy of speech segmentation in adults. Neuroimage, 48(3), 541-553.
Cunillera, T., Toro, J. M., Sebastián-Gallés, N., & Rodríguez-Fornells, A. (2006). The effects of stress and statistical cues on continuous speech segmentation: An event-related brain potential study. Brain research, 1123(1), 168-178.
Daltrozzo, J., & Conway, C. M. (2014). Neurocognitive mechanisms of statistical-sequential learning: what do event-related potentials tell us?. Frontiers in human neuroscience, 8, 437.
Daltrozzo, J., Emerson, S. N., Deocampo, J., Singh, S., Freggens, M., Branum-Martin, L., & Conway, C. M. (2017). Visual statistical learning is related to natural language ability in adults: An ERP study. Brain and language, 166, 40-51.
Dell, G. S., Reed, K. D., Adams, D. R., & Meyer, A. S. (2000). Speech errors, phonotactic constraints, and implicit learning: A study of the role of experience in language production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1355–1367.
Endress, A. D., & Mehler, J. (2009). The surprising power of statistical learning: When fragment knowledge leads to false memories of unheard words. Journal of Memory and Language, 60, 351–367. https://doi.org/10.1016/j.jml.2008.10.003
Evans, J. L., Saffran, J. R., & Robe-Torres, K. (2009). Statistical learning in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 52, 321–335.
Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological science, 12(6), 499-504.
Friederici, A. D., Mueller, J. L., & Oberecker, R. (2011). Precursors to natural grammar learning: preliminary evidence from 4-month-old infants. PLoS One, 6(3), e17920.
Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: the paradox of statistical learning. Trends in cognitive sciences, 19(3), 117-125.
Frost, R., Siegelman, N., Narkiss, A., & Afek, L. (2013). What predicts successful literacy acquisition in a second language?. Psychological science,24(7), 1243-1252.
Gebhart, A. L., Newport, E. L., & Aslin, R. N. (2009). Statistical learning of adjacent and nonadjacent dependencies among nonlinguistic sounds. Psychonomic bulletin & review, 16(3), 486-490.
Gollan, T. H., Weissberger, G. H., Runnqvist, E., Montoya, R. I., & Cera, C. M. (2012). Self-ratings of spoken language dominance: A Multilingual Naming Test (MINT) and preliminary norms for young and aging Spanish–English bilinguals. Bilingualism: Language and Cognition, 15(3), 594-615.
Gomez, R. L. (2002). Variability and detection of invariant structure. Psychological Science, 13(5), 431-436.
Ho, C. S. H., & Bryant, P. (1997). Learning to read Chinese beyond the logographic phase. Reading research quarterly, 32(3), 276-289.
Ho, C. S.-H., Yau, P. W.-Y., & Au, A. (2003). Development of orthographic knowledge and its relationship with reading and spelling among Chinese kindergarten and primary school children. In C. McBride-Chang & H.-C. Chen (Eds.), Reading development in Chinese children (pp. 51–71). Westport, CT: Praeger.
Hsiao, J. H. W., & Shillcock, R. (2006). Analysis of a Chinese phonetic compound database: Implications for orthographic processing. Journal of psycholinguistic research, 35(5), 405-426.
Hsu, H. J., Tomblin, J. B., & Christiansen, M. H. (2014). Impaired statistical learning of non-adjacent dependencies in adolescents with specific language impairment. Frontiers in psychology, 5, 175.
Huang, H. S., & Hanley, J. R. (1995). Phonological awareness and visual skills in learning to read Chinese and English. Cognition, 54(1), 73-98.
Huang, H. S., & Hanley, J. R. (1997). A longitudinal study of phonological awareness, visual skills, and Chinese reading acquisition among first-graders in Taiwan. International Journal of Behavioral Development, 20(2), 249-268.
Huang, H. S. (2001). 中文年級認字量表台北:心理.
Hung, Y. H., Hung, D. L., Tzeng, O. J. L., & Wu, D. H. (2014). Tracking the temporal dynamics of the processing of phonetic and semantic radicals in Chinese character recognition by MEG. Journal of Neurolinguistics, 29, 42-65.
Jost, E., Conway, C. M., Purdy, J. D., Walk, A. M., & Hendricks, M. A. (2015). Exploring the neurodevelopment of visual statistical learning using event-related brain potentials. Brain research, 1597, 95-107.
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189.
Karpicke, J. D., & Pisoni, D. B. (2004). Using immediate memory span. Memory & cognition, 32(6), 956-964.
Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, S. J., Tivarus, M. E., & Bavelier, D. (2013). The neural correlates of statistical learning in a word segmentation task: An fMRI study. Brain and language, 127(1), 46-54.
Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116(3), 321-340.
Kim, R., Seitz, A., Feenstra, H., & Shams, L. (2009). Testing assumptions of statistical learning: Is it long-term and implicit?. Neuroscience letters, 461(2), 145-149.
Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism.Cognition, 83(2), B35-B42.
Kooijman, V., Hagoort, P., & Cutler, A. (2005). Electrophysiological evidence for prelinguistic infants′ word recognition in continuous speech. Cognitive Brain Research, 24(1), 109-116.
Krogh, L., Vlach, H., & Johnson, S. P. (2013). Statistical learning across development: flexible yet constrained. Frontiers in Psychology, 3, 598.
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual review of psychology, 62, 621-647.
Lee, C. Y., Liu, Y. N., & Tsai, J. L. (2012). The time course of contextual effects on visual word recognition. frontiers in Psychology, 3, 285.
Lin, S. E., Chen, H. C., Zhao, J., Li, S., He, S., & Weng, X. C. (2011). Left-lateralized N170 response to unpronounceable pseudo but not false Chinese characters—the key role of orthography. Neuroscience, 190, 200-206.
Low, A., Lim, L., Lim, L., Wong, B., Silva, E., Ng, K. P., & Kandiah, N. (2019). Construct validity of the Visual Cognitive Assessment Test (VCAT)—a cross-cultural language-neutral cognitive screening tool. International psychogeriatrics, 1-9.
Maria, L., & Mats, N. (2019). Cross-cultural applicability and reduction of the American seven-subtest short form of the WAIS on a Swedish non-clinical sample. Nordic Psychology, 1-16.
Maye, J., Weiss, D. J., & Aslin, R. N. (2008). Statistical phonetic learning in infants: Facilitation and feature generalization. Developmental Science, 11, 122–134.
Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82(3), B101-B111.
Misyak, J. B., & Christiansen, M. H. (2012). Statistical learning and language: an individual differences study. Language Learning, 62(1), 302-331.
Mueller, J. L., Hahne, A., Fujii, Y., & Friederici, A. D. (2005). Native and nonnative speakers′ processing of a miniature version of Japanese as revealed by ERPs. Journal of Cognitive Neuroscience, 17(8), 1229-1244.
Newport, E. L., & Aslin, R. N. (2000). Innately constrained learning: Blending old and new approaches to language acquisition. In Proceedings of the 24th annual boston university conference on language development (Vol. 1, pp. 1-21).
Pacton, S., Perruchet, P., Fayol, M., & Cleeremans, A. (2001). Implicit learning out of the lab: The case of orthographic regularities. Journal of experimental psychology: General, 130(3), 401.
Pearce, M. T., Ruiz, M. H., Kapasi, S., Wiggins, G. A., & Bhattacharya, J. (2010). Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation. NeuroImage, 50(1), 302-313.
Perfors, A., & Kidd, E. (2018). What drives individual differences in statistical learning? The role of perceptual fluency and familiarity.
Perruchet, P., & Poulin-Charronnat, B. (2012). Beyond transitional probability computations: Extracting word-like units when only statistical information is available. Journal of Memory and Language, 66(4), 807–818. https://doi.org/10.1016/j.jml.2012.02.010
Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of verbal learning and verbal behavior, 6(6), 855-863.
Reber Arthur, S. (1993). Implicit learning and tacit knowledge: an essay on the cognitive unconscious.
Rothe, J., Cornell, S., Ise, E., & Schulte-Körne, G. (2015). A comparison of orthographic processing in children with and without reading and spelling disorder in a regular orthography. Reading and Writing, 28(9), 1307-1332.
Saffran, J. R. (2002). Constraints on statistical language learning. Journal of Memory and Language, 47, 172-196.
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926-1928.
Sanders, L. D., Newport, E. L., & Neville, H. J. (2002). Segmenting nonsense: an event-related potential index of perceived onsets in continuous speech. Nature neuroscience, 5(7), 700-703.
Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial temporal lobe for statistical learning. Journal of cognitive neuroscience, 26(8), 1736-1747.
Siegelman, N., Bogaerts, L., Christiansen, M. H., & Frost, R. (2017). Towards a theory of individual differences in statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160059.
Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge impacts statistical learning performance. Cognition, 177, 198-213.
Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior research methods, 49(2), 418-432.
Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of memory and language, 81, 105-120.
Sonnweber, R., Ravignani, A., & Fitch, W. T. (2015). Non-adjacent visual dependency learning in chimpanzees. Animal cognition, 18(3), 733-745.
Su, M., Wang, J., Maurer, U., Zhang, Y., Li, J., McBride, C., ... & Shu, H. (2015). Gene–environment interaction on neural mechanisms of orthographic processing in Chinese children. Journal of neurolinguistics, 33, 172-186.
Tabullo, Á., Sevilla, Y., Segura, E., Zanutto, S., & Wainselboim, A. (2013). An ERP study of structural anomalies in native and semantic free artificial grammar: evidence for shared processing mechanisms. Brain research, 1527, 149-160.
Teinonen, T., Fellman, V., Näätänen, R., Alku, P., & Huotilainen, M. (2009). Statistical language learning in neonates revealed by event-related brain potentials. BMC neuroscience, 10(1), 21.
Thiessen, E. D. (2010). Effects of visual information on adults’ and infants’ auditory statistical
learning. Cognitive Science, 34(6), 1093-1106.
Tong, X., & McBride-Chang, C. (2010). Chinese-English biscriptal reading: Cognitive component skills across orthographies. Reading and Writing, 23(3-4), 293-310.
Tsai, J. L., Lee, C. Y., Lin, Y. C., Tzeng, O. J., & Hung, D. L. (2006). Neighborhood size effects of Chinese words in lexical decision and reading. Language and Linguistics, 7(3), 659-675.
Tsai, P. S., Yu, B. H. Y., Lee, C. Y., Tzeng, O. J. L., Hung, D. L., & Wu, D. H. (2009). An event-related potential study of the concreteness effect between Chinese nouns and verbs. Brain Research, 1253, 149-160.
Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134(4), 552.
Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of cognitive neuroscience, 21(10), 1934-1945.
Vuong, L. C., Meyer, A. S., & Christiansen, M. H. (2016). Concurrent statistical learning of adjacent and nonadjacent dependencies. Language Learning, 66(1), 8-30.
Wang, C. C., Hung, L. Y., Chang, Y. W., & Chen, H. F. (2008). Number of characters school students know from Grade 1 to G9. Bulletin of Educational Psychology, 39(4), 555-568.
Wang, M., Koda, K., & Perfetti, C. A. (2003). Alphabetic and nonalphabetic L1 effects in English word identification: A comparison of Korean and Chinese English L2 learners. Cognition, 87(2), 129-149.
Wang, M., Perfetti, C. A., & Liu, Y. (2005). Chinese–English biliteracy acquisition: Cross-language and writing system transfer. Cognition, 97(1), 67-88.
Warker, J. A., & Dell, G. S. (2006). Speech errors reflect newly learned phonotactic constraints. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 387–398.
Wei, D., Dowens, M. G., & Guo, T. (2018). Early lexical processing of Chinese words indexed by Visual Mismatch Negativity effects. Scientific reports, 8(1), 1289.
Yu, A. (2016). Correlation of statistical learning of different implicit transitional probabilities with Chinese literacy acquisition in non-native adult learners. (Master’s thesis), National Central University, Taiwan
Yu, A., Chen, M. S., Cherodath, S., Hung, D. L., Tzeng, O. J., & Wu, D. H. (2019). Neuroimaging evidence for sensitivity to orthography-to-phonology conversion in native readers and foreign learners of Chinese. Journal of Neurolinguistics, 50, 53-70.
Yum, Y. N., Su, I. F., & Law, S. P. (2015). Early effects of radical position legality in Chinese: An ERP study. Scientific Studies of Reading, 19(6), 456-467.
van Zuijen, T. L., Simoens, V. L., Paavilainen, P., Näätänen, R., & Tervaniemi, M. (2006). Implicit, intuitive, and explicit knowledge of abstract regularities in a sound sequence: an event-related brain potential study. Journal of Cognitive Neuroscience, 18(8), 1292-1303.
指導教授 吳嫻(Denise Hsien Wu) 審核日期 2019-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明