博碩士論文 105826003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:52.6.70.202
姓名 黃元蓉(Yuan-Jung Huang)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 機械循環拉伸對肺癌細胞功能的影響之研究
(The effect of mechanical circulation stretching on the function of lung cancer cells)
相關論文
★ 運用深度學習方法預測癌症種類及存活死亡與治癒復發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在過去的文章我們知道機械循環拉伸會重新定位細胞骨架結構以及改變細胞的侵襲及爬行速率,所以本實驗的目的是探討機械循環拉伸對人類肺癌細胞功能的影響,而細胞功能的改變是由哪些基因在做調控。本實驗對象分別是人類肺腺癌細胞A549以及人類非小細胞肺癌細胞H322m,將這兩株細胞經由Boxer TM Cyclic Stretch Culture System (ATMS-Boxer)機械拉伸儀器進行拉伸實驗,拉伸的時間設定在0h、4h和24h,頻率設定在15%,0.5HZ。對拉伸與未拉伸的細胞分別做細胞侵襲、細胞遷移和細胞形成細胞群之能力以及DNA微陣列的分析。從實驗結果我們發現A549和H322m在經由機械循環拉伸四小時會促進細胞的侵襲能力(p-value < 0.05),接著我們藉由DNA微陣列的分析,分析出CXCL1、 FOS、 CCL2、 CCL20、 BIRC3、TNFAIP3這6個基因在肺癌細胞拉伸四小時後與未拉伸的細胞相比有顯著性的差異(fold change > 2 or < -2 )。而這些基因大部分都是促進細胞侵襲能力,DNA微陣列的分析結果我們發現在拉伸四小時的細胞中都是表現量較高,這些拉力調控基因在路徑分析中發現可能藉由TNF信號通路來調控細胞的侵襲能力。
摘要(英) In the past, we known that mechanical cyclic stretching can induce reorganization of cytoskeleton and changed the cell migration and invasion. Therefor we identified the cyclic stretch-regulated gene expression in human lung cancer cell lines. Human lung cancer cell line A549 and H322m were subjected to cyclic strain (the frequency set in 15%, 0.5HZ) on 0h, 4h and 24h. We compared invasion assay, migration assay, colony formation and microarray assay in stretching and non-stretching groups. The results showed that the cell invasion in A549 and H322m were increased after 4hr stretching (p-value < 0.05). The microarray data showed that CXCL1, FOS, CCL2, CCL20, BIRC3, and TNFAIP3 were significant differences after 4hr stretching (fold change >2 or <-2). These genes have been reported to enhance cell invasion and these genes were cyclic stretch-regulated genes. Pathway enrichment analysis have found that these genes might regulate cells invasion through the TNF signaling pathway.
關鍵字(中) ★ 肺癌細胞
★ 機械循環拉伸
★ 細胞侵襲
★ 長片段非編碼RNA
關鍵字(英) ★ lung cancer cells
★ mechanical circulation stretching
★ cell invasion
★ long non-coding RNA
論文目次 目錄
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
一、緒論 1
1-1 非小細胞肺癌 1
1-2 非小細胞肺癌肺癌成因 1
1-3 肺腺癌治療方法 2
1-4 細胞機械循環拉伸 3
1-5 DNA微陣列分析 5
1-6 KEGG資料庫 5
1-7 長片段非編碼RNA 6
二、實驗方法與材料 7
2-1實驗方法 7
2-1-1細胞循環拉伸實驗 7
2-1-2 細胞侵入 7
2-1-3 細胞爬行 7
2-1-4 細胞群落的形成 8
2-1-5 細胞生長速率 8
2-1-6 qPCR sybr green 8
2-1-7 西方墨點法 9
2-1 實驗材料 10
2-2-1 細胞培養 10
2-2-2 週期性細胞拉伸系統 10
2-2-3 細胞功能和RNA萃取套件 11
三、實驗流程 12
四、實驗結果 14
4-1 細胞拉伸實驗結果 14
4-1-1 A549和H322m 經由機械循環拉伸四小時後會促進細胞的侵襲能力 14
4-1-2 H322m 經由機械循環拉伸後會抑制細胞的遷移能力 15
4-1-3 機械循環拉伸對於細胞形成群落的速率 18
4-1-4 機械循環拉伸影響細胞的生長速率 20
4-2 共五十九個基因在A549和H322m拉伸四小時後表現量的方向性一致 21
4-3 在這五十九個基因有6個基因都位在TNF signaling pathway的下游 25
4-4 利用qPCR以及西方墨點法來應證DNA微陣列分析的結果 33
4-5 細胞在拉伸四小時後LINC00707、LINC00941和LINC01296的表現量上升 34
4-6 LINC00707促進肺腺癌細胞的增生以及促進癌細胞的遷移能力 35
4-7 LINC00941的過表達會促進細胞發生上皮變間質型的轉換 35
4-8 LINC01296會促進細胞侵襲和遷移,抑制細胞凋亡 35
4-9 機械拉伸對人類肺癌是否有持續性的影響 37
五、討論與結論 38
5-1 TNF signaling pathway與細胞侵襲能力之間的關係 38
5-2 長時間機械循環拉伸抑制細胞的生長速率以及侵襲速率 39
5-3 機械循環拉對細胞有持續性的影響 40
5-4 lncRNA透過調控目標基因來調節細胞功能 40
5-5 結論 41
六、參考文獻 42
參考文獻 1. Torre LA, Siegel RL, Jemal A: Lung cancer statistics. In: Lung cancer and personalized medicine. Springer; 2016: 1-19.
2. Wong MC, Lao XQ, Ho K-F, Goggins WB, Shelly L: Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Scientific Reports 2017, 7(1):14300.
3. Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, Petrella F, Spaggiari L, Rosell R: Non-small-cell lung cancer. Nature Reviews Disease Primers 2015, 1:15009.
4. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA: Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. In: Mayo Clinic Proceedings: 2008. Elsevier: 584-594.
5. Vineis P, Airoldi L, Veglia F, Olgiati L, Pastorelli R, Autrup H, Dunning A, Garte S, Gormally E, Hainaut P: Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study. Bmj 2005, 330(7486):277.
6. Freudenheim JL, Ritz J, Smith-Warner SA, Albanes D, Bandera EV, Van Den Brandt PA, Colditz G, Feskanich D, Goldbohm RA, Harnack L: Alcohol consumption and risk of lung cancer: a pooled analysis of cohort studies–. The American journal of clinical nutrition 2005, 82(3):657-667.
7. Kunzli N, Tager I: Air pollution: from lung to heart. Swiss Med Wkly 2005, 135(47-48):697-702.
8. Hwang S-J, Cheng LS-C, Lozano G, Amos CI, Gu X, Strong LC: Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Human genetics 2003, 113(3):238-243.
9. Vasudev NS, Reynolds AR: Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 2014, 17(3):471-494.
10. Janne PA, Yang JC-H, Kim D-W, Planchard D, Ohe Y, Ramalingam SS, Ahn M-J, Kim S-W, Su W-C, Horn L: AZD9291 in EGFR inhibitor–resistant non–small-cell lung cancer. New England Journal of Medicine 2015, 372(18):1689-1699.
11. Shaw AT, Kim D-W, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR, Vansteenkiste J, Sharma S, De Pas T: Ceritinib in ALK-rearranged non–small-cell lung cancer. New England Journal of Medicine 2014, 370(13):1189-1197.
12. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran Jr WJ, Wu Y-L, Paz-Ares L: Lung cancer: current therapies and new targeted treatments. The Lancet 2017, 389(10066):299-311.
13. Geiger R, Taylor W, Glucksberg M, Dean D: Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer. Gene therapy 2006, 13(8):725.
14. Jufri NF, Mohamedali A, Avolio A, Baker MS: Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vascular cell 2015, 7(1):8.
15. Loperena R, Itani HA, Gomez JA, Engel N, Kirabo A, Harrison DG: Mechanical Stretch on Endothelial Cells Promotes Monocyte Activation and Differentiation into Immunogenic Dendritic Cells via STAT3. Hypertension 2017, 70(Suppl_1):A063.
16. Benham-Pyle BW, Pruitt BL, Nelson WJ: Mechanical strain induces E-cadherin–dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 2015, 348(6238):1024-1027.
17. Weber B, Bader N, Lehnich H, Simm A, Silber R-E, Bartling B: Microarray-based gene expression profiling suggests adaptation of lung epithelial cells subjected to chronic cyclic strain. Cellular Physiology and Biochemistry 2014, 33(5):1452-1466.
18. Rysa J, Tokola H, Ruskoaho H: Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Scientific reports 2018, 8(1):4733.
19. Heller MJ: DNA microarray technology: devices, systems, and applications. Annual review of biomedical engineering 2002, 4(1):129-153.
20. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270(5235):467-470.
21. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M: From genomics to chemical genomics: new developments in KEGG. Nucleic acids research 2006, 34(suppl_1):D354-D357.
22. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic acids research 2016, 45(D1):D353-D361.
23. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M: KEGG as a reference resource for gene and protein annotation. Nucleic acids research 2015, 44(D1):D457-D462.
24. Mercer TR, Dinger ME, Mattick JS: Long non-coding RNAs: insights into functions. Nature reviews genetics 2009, 10(3):155.
25. Ma L, Bajic VB, Zhang Z: On the classification of long non-coding RNAs. RNA biology 2013, 10(6):924-933.
26. Fatica A, Bozzoni I: Long non-coding RNAs: new players in cell differentiation and development. Nature Reviews Genetics 2014, 15(1):7.
27. Shi X, Sun M, Liu H, Yao Y, Song Y: Long non-coding RNAs: a new frontier in the study of human diseases. Cancer letters 2013, 339(2):159-166.
28. Ma T, Ma H, Zou Z, He X, Liu Y, Shuai Y, Xie M, Zhang Z: The Long Intergenic Noncoding RNA 00707 Promotes Lung Adenocarcinoma Cell Proliferation and Migration by Regulating Cdc42. Cellular Physiology and Biochemistry 2018, 45(4):1566-1580.
29. Yan X, Zhang D, Wu W, Wu S, Qian J, Hao Y, Yan F, Zhu P, Wu J, Huang G: Mesenchymal Stem Cells Promote Hepatocarcinogenesis via lncRNA–MUF Interaction with ANXA2 and miR-34a. Cancer research 2017, 77(23):6704-6716.
30. Zhu S, Zhang X, Weichert-Leahey N, Dong Z, Zhang C, Lopez G, Tao T, He S, Wood AC, Oldridge D: LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis. Cancer cell 2017, 32(3):310-323. e315.
31. Zhang D, Li H, Xie J, Jiang D, Cao L, Yang X, Xue P, Jiang X: Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma. International journal of oncology 2018, 52(6):1777-1786.
32. Chen G, Goeddel DV: TNF-R1 signaling: a beautiful pathway. Science 2002, 296(5573):1634-1635.
33. Wu Y-d, Zhou B: TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. British journal of cancer 2010, 102(4):639.
34. Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, Klemm F, Pukrop T, Binder C, Balkwill FR: Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. The Journal of Immunology 2005, 175(2):1197-1205.
35. Lin Y, Zhai E, Liao B, Xu L, Zhang X, Peng S, He Y, Cai S, Zeng Z, Chen M: Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer. Oncotarget 2017, 8(7):11990.
指導教授 許藝瓊(Yi-Chiung Hsu) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明