博碩士論文 105826013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.234.143.26
姓名 余乾碩(CHIEN-SHUO YU)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 蒙古黃耆對大腸癌影響並降低miR-29a的表現量之研究
(Down regulation of miR-29a by Astragalus mongholicus treatment in Colorectal Cancer)
相關論文
★ 中草藥BP004誘導管腔A型乳腺癌細胞凋亡★ 藉由微陣列基因晶片以探討中草藥BP011w對於抑制肺腺癌細胞株爬行及轉移之機制
★ 鑑別可應用在病理與臨床之肺腺癌與鱗狀上皮細胞肺癌的生物標記★ 中國傳統醫藥蒙古黃耆在HCT116結腸癌細胞體外和體內實驗呈現腫瘤抑制作用
★ 泰莫西芬與BP012W乙醇分離物之協同作用造成強化管狀A型乳腺癌細胞凋亡影響★ 揭示CEP55基因在大腸直腸癌轉移中所扮演的角色
★ BP016W-新型食道鱗狀上皮細胞癌候選藥物★ 傳統中藥複方FY001W是三陰性乳腺癌新型的候選藥物
★ BP023W在頭頸癌中的細胞毒性與調控機制★ 藉由L1000?表達圖譜數據來解釋中醫分類方法中的屬性和歸經
★ Solasodine,BP010W成份之一,抑制肺癌的遷移和侵襲能力★ 利用生物資訊策略找出普濟方內加速傷口癒合的新配方
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-1-28以後開放)
摘要(中) 蒙古黃耆 (學名:Astragalus mongholicus,AM) ,在過去數篇文章中指出將它用於治療癌症有一定的功效[1-4],但其中的分子機轉的部分仍然尚未明確。本研究目的是欲找出黃耆加藥後影響大腸癌細胞以及組織的分子機轉,用系統生物的分析技術去研究黃是是如何影響或治療大腸癌。本研究先從基因晶片分析開始,使用GeneSpring軟件GX 7.3版(安捷倫,CA,USA)先行選出差異基因,並使用miRTarBase生物資料庫合併分析,最後再結合曾愛倫博士的論文內容合併篩選出候選的基因---的miR-29a[5],一個非編碼RNA,以進行後續的實驗。本研究使用即時聚合酶鏈鎖反應實驗先去證明在大腸癌HCT116細胞株以及使用本研究室過去研究生曾愛倫留下來的24隻小鼠組織樣本,這些組織樣本是先將牠們皮下注入HCT116細胞並長出腫瘤,再接受黃耆加藥治療,最後在將腫瘤組織處理研究。組織中的miR-29a的表現量有因黃耆造成出現抑制的影響。之後,由於本研究很榮幸能跟陳文逸老師實驗室有合作,因此本研究得以獲得陳老師的專利nDNA修飾的探針使用的權利,以用於進行原位雜交實驗。我們可以確認的miR-29a在HCT116細胞株中表現量有因黃耆加藥後而產生差異。之後本實驗使用先前本研究室留下的小鼠組織陣列晶片去進行組織學原位雜交實驗,進一步去證明黃耆加藥後,在組織學上亦可以看出黃耆加藥之後造成的miR-29a表現量的抑制。或許在未來的miR-29a的標靶藥物會結合黃耆開發出新的醫學以及商業用途用來治療大腸癌。
摘要(英) Astragalus Mongholicus (AM), has pointed out in the past several articles that it has effect on the treatment of colorectal cancer, but the molecular mechanism of the part is still unclear. The purpose of this study is to find out the molecular mechanism of the influence of jaundice on colorectal cancer cells and tissues, and to study how Astragalus mongholicus affects or treats colorectal cancer from the perspective of molecular biology. This study begins with the analysis of the gene chip, uses the GeneSpring software GX version 7.3 (Agilent, CA, USA) to select the differential genes first, and uses the miRTarBase biological database to combine the analysis, and finally combines the previous research results of the laboratory to select the candidate genes. --- miR-29a, a non-coding RNA for subsequent experiments. In this study, the real-time polymerase chain reaction assay was used to prove that the HCT116 cell line of colorectal cancer and the 24 Rats left by the graduate students Zeng Heather in this laboratory were injected subcutaneously into HCT116 cells and grew tumors, and then received jaundice. Drug treatment, and finally in the treatment of tumor tissue. The amount of miR-29a in the tissue is affected by the inhibition caused by jaundice. Later, because this study has cooperated with Chen Wen yih laboratory, this study obtained the right to use Chen′s patented nDNA modified probe for in situ hybridization experiments. We can confirm that the expression of miR-29a in HCT116 cell line is different due to the addition of jaundice. After this experiment, the mouse tissue array wafer left by the previous laboratory was used for histological in situ hybridization experiment, and further proved that after the administration of jaundice, the miR caused by the administration of jaundice can also be seen in histology. -29a inhibition of the amount of expression. Perhaps in the future, miR-29a′s target drugs will be combined with Astragalus to develop new medical and commercial uses for the treatment of colorectal cancer.
關鍵字(中) ★ 黃耆
★ 大腸癌
★ 降低
★ 表現量
★ 研究
關鍵字(英) ★ Down regulation
★ miR-29a
★ Astragalus mongholicus
★ Colorectal Cancer
論文目次 目錄
中文摘要 I
Abstract II
致謝 III
圖目錄 V
第1章介紹 1
1.1流行病學 1
1.2治療 2
1.3結直腸癌的分子分析 2
1.4意義和目標 4
第二章材料和方法 5
2.1細胞和培養條件 5
2.2 alamarBlue®生存力分析 5
2.3 FACS分析 5
2.4微陣列基因表達晶片分析 6
2.5即時聚合酶鏈式反應實驗 6
2.6具有差異表達的微小RNA的數據庫分析 7
2.7原位雜交實驗 7
第3章黃耆影響大腸癌細胞內的微小RNA的研究結果 9
3.1介紹和目標 9
3.2結果 11
3.2.1 黃耆抑制體外HCT116細胞的生長 11
3.2.2 miRNA的分析 12
3.2.3 即時聚合酶鏈鎖反應實驗 17
3.2.4細胞學及組織學原位雜交實驗 18
3.2.5功能分類、途徑和網絡分析 22
第4章結論 27
第5章討論 28
參考文獻 30
參考資料 35
參考文獻 1. Ma, X., et al., Preparative isolation and purification of calycosin from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. Journal of Chromatography A, 2002. 962(1-2): p. 243-247.
2. Ma, X., et al., Preparative isolation and purification of isoflavan and pterocarpan glycosides from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. Journal of Chromatography A, 2004. 1023(2): p. 311-315.
3. Yan, H., et al., Chemical analysis of Astragalus mongholicus polysaccharides and antioxidant activity of the polysaccharides. Carbohydrate Polymers, 2010. 82(3): p. 636-640.
4. Ma, X., et al., Preparative isolation and purification of two isoflavones from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. Journal of Chromatography A, 2003. 992(1-2): p. 193-197.
5. Traditional Chinese Medicine Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao Exhibits Tumor Inhibitory Effect in HCT116 Colorectal Cancer Cells in vitro and in vivo. 2016.
6. GLOBOCAN. 2018. https://gco.iarc.fr/.
7. Promoting Your Health Health Promotion Administration. Ministry of Health and Welfare. 2016, December 28.
8. 曾若嫻, 民眾之大腸直腸癌認知與預防行為之探討---以某地區教學醫院大腸直腸癌篩檢民眾為例, in 醫務管理系. 2012, 嘉南藥理科技大學: 台南市. p. 87.
9. Lynch, H.T. and A. De la Chapelle, Hereditary colorectal cancer. New England Journal of Medicine, 2003. 348(10): p. 919-932.
10. Wang, J.-Y., Adjuvant chemotherapy of colorectal cancer. J Chinese Oncol Soc, 2008. 24: p. 180.
11. Cunningham, D., et al., Colorectal cancer. The Lancet, 2010. 375(9719): p. 1030-1047.
12. Group, Q.C., Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. The Lancet, 2007. 370(9604): p. 2020-2029.
13. Mina, L.A. and G.W. Sledge Jr, Rethinking the metastatic cascade as a therapeutic target. Nature reviews Clinical oncology, 2011. 8(6): p. 325.
14. Fiorentini, G., et al., Multidisciplinary approach of colorectal cancer liver metastases. World journal of clinical oncology, 2017. 8(3): p. 190.
15. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. cell, 2011. 144(5): p. 646-674.
16. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. cell, 2009. 136(2): p. 215-233.
17. Fu, J., et al., Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC systems biology, 2012. 6(1): p. 68.
18. Tang, W., et al., MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. British journal of cancer, 2014. 110(2): p. 450.
19. Irwin, M.H. and C.A. Pinkert, 20 - Analysis of Transgene Expression, in Transgenic Animal Technology (Third Edition), C.A. Pinkert, Editor. 2014, Elsevier: London. p. 543-564.
20. Bandtlow, C.E., et al., Cellular localization of nerve growth factor synthesis by in situ hybridization. The EMBO journal, 1987. 6(4): p. 891-899.
21. Awgulewitsch, A. and M. Utset, Detection of specific RNA sequences in tissue sections by in situ hybridization. Methods in Nucleic Acids Research, CRC Press, Boca Raton, FL, 1991: p. 359-375.
22. Neidler, S., What are the differences between PCR, RT-PCR, qPCR, and RT-qPCR? 2017, 3.
23. miRTarBase. http://mirtarbase.mbc.nctu.edu.tw/php/index.php.
24. DAVID. 2009. https://david.ncifcrf.gov/.
25. NCBI. https://www.ncbi.nlm.nih.gov/.
26. Wang, T., et al., RETRACTED ARTICLE: Astragalus saponins affect proliferation, invasion and apoptosis of gastric cancer BGC-823 cells. Diagnostic pathology, 2013. 8(1): p. 179.
27. Wu, J.-J., et al., A standardized extract from Paeonia lactiflora and Astragalus membranaceus induces apoptosis and inhibits the proliferation, migration and invasion of human hepatoma cell lines. International journal of oncology, 2013. 43(5): p. 1643-1651.
28. Yoshida, Y., et al., Immunomodulating activity of Chinese medicinal herbs and Oldenlandia diffusa in particular. International Journal of Immunopharmacology, 1997. 19(7): p. 359-370.
29. Karius, T., et al., MicroRNAs in cancer management and their modulation by dietary agents. Biochemical pharmacology, 2012. 83(12): p. 1591-1601.
30. Li, Y., et al., Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharmaceutical research, 2010. 27(6): p. 1027-1041.
31. Neelakandan, K., P. Babu, and S. Nair, Emerging roles for modulation of microRNA signatures in cancer chemoprevention. Current cancer drug targets, 2012. 12(6): p. 716-740.
32. Teiten, M.H., M. Dicato, and M. Diederich, Curcumin as a regulator of epigenetic events. Molecular nutrition & food research, 2013. 57(9): p. 1619-1629.
33. Lin, C.-L., et al., MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. Journal of the American Society of Nephrology, 2014. 25(8): p. 1698-1709.
34. Sun, H., et al., miR‐486 regulates metastasis and chemosensitivity in hepatocellular carcinoma by targeting CLDN10 and CITRON. Hepatology Research, 2015. 45(13): p. 1312-1322.
35. Wang, Y.-Q., et al., MicroRNA-581 promotes hepatitis B virus surface antigen expression by targeting Dicer and EDEM1. Carcinogenesis, 2014. 35(9): p. 2127-2133.
36. Chen, P., et al., MiR-1297 regulates the growth, migration and invasion of colorectal cancer cells by targeting cyclo-oxygenase-2. Asian Pac J Cancer Prev, 2014. 15(21): p. 9185-90.
37. Liang, X., et al., MicroRNA-1297 inhibits prostate cancer cell proliferation and invasion by targeting the AEG-1/Wnt signaling pathway. Biochemical and biophysical research communications, 2016. 480(2): p. 208-214.
38. Zhao, H., et al., miR-30b regulates migration and invasion of human colorectal cancer via SIX1. Biochemical Journal, 2014. 460(1): p. 117-129.
39. Gu, Y.-f., et al., miR-30b and miR-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chinese medical journal, 2013. 126(23): p. 4435-4439.
40. Jana, S., et al., miR-216b suppresses breast cancer growth and metastasis by targeting SDCBP. Biochemical and biophysical research communications, 2017. 482(1): p. 126-133.
41. Kim, S.Y., Y.-H. Lee, and Y.-S. Bae, MiR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting α subunit of protein kinase CKII in human colorectal cancer cells. Biochemical and biophysical research communications, 2012. 429(3): p. 173-179.
42. Funamizu, N., et al., MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. International journal of oncology, 2014. 44(3): p. 725-734.
43. Li, P., et al., MicroRNA-205 functions as a tumor suppressor in colorectal cancer by targeting cAMP responsive element binding protein 1 (CREB1). American journal of translational research, 2015. 7(10): p. 2053.
44. Yang, Z., et al., MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein. Journal of Biological Chemistry, 2013. 288(40): p. 28893-28899.
45. Hoppe, R., et al., Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. European journal of cancer, 2013. 49(17): p. 3598-3608.
46. Stadthagen, G., et al., Loss of miR-10a activates lpo and collaborates with activated Wnt signaling in inducing intestinal neoplasia in female mice. PLoS genetics, 2013. 9(10): p. e1003913.
47. Yin, J., et al., Differential expression of serum miR-126, miR-141 and miR-21 as novel biomarkers for early detection of liver metastasis in colorectal cancer. Chinese Journal of Cancer Research, 2014. 26(1): p. 95.
48. Lu, L., et al., MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomedicine & pharmacotherapy, 2014. 68(1): p. 13-19.
49. Jia, W., et al., MicroRNA-30c-2* expressed in ovarian cancer cells suppresses growth factor induced cellular proliferation and downregulates the oncogene BCL9. Molecular Cancer Research, 2011: p. molcanres. 0245.2011.
50. Li, Z., et al., miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer letters, 2012. 323(1): p. 41-47.
51. Zhao, H., et al., Expression of miR-136 is associated with the primary cisplatin resistance of human epithelial ovarian cancer. Oncology reports, 2015. 33(2): p. 591-598.
52. Yao, Y., et al., MicroRNA profiling of human gastric cancer. Molecular medicine reports, 2009. 2(6): p. 963-970.
53. Ma, S., et al., MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer research, 2011.
54. Harazono, Y., et al., miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PloS one, 2013. 8(5): p. e62757.
55. Yu, J., et al., The microRNA-520a-3p inhibits proliferation, apoptosis and metastasis by targeting MAP3K2 in non-small cell lung cancer. American journal of cancer research, 2015. 5(2): p. 802.
56. Wu, N., et al., MiR-4782-3p inhibited non-small cell lung cancer growth via USP14. Cellular Physiology and Biochemistry, 2014. 33(2): p. 457-467.
57. Lan, F.F., et al., Hsa‐let‐7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c‐Myc and upregulation of p16INK4A. International Journal of Cancer, 2011. 128(2): p. 319-331.
58. Chen, Y., et al., MicroRNA 363 mediated positive regulation of c-myc translation affect prostate cancer development and progress. Neoplasma, 2015. 62(2): p. 191-198.
59. Li, B., et al., miR-503 suppresses metastasis of hepatocellular carcinoma cell by targeting PRMT1. Biochemical and biophysical research communications, 2015. 464(4): p. 982-987.
60. Chang, S.-W., et al., miR-503 inhibits cell proliferation and induces apoptosis in colorectal cancer cells by targeting E2F3. International journal of clinical and experimental pathology, 2015. 8(10): p. 12853.
61. Zheng, L., et al., miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell death & disease, 2016. 7(9): p. e2382.
62. Chen, L., et al., miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell death & disease, 2015. 5(1): p. e1034.
63. Zhang, S.-j., et al., miR-1303 targets claudin-18 gene to modulate proliferation and invasion of gastric cancer cells. Digestive diseases and sciences, 2014. 59(8): p. 1754-1763.
64. Shin, V.Y., et al., A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Molecular cancer, 2015. 14(1): p. 202.
65. miRCURY LNA microRNA Detection Probes. 2018.
66. Mattick, J.S. and I.V. Makunin, Non-coding RNA. Human molecular genetics, 2006. 15(suppl_1): p. R17-R29.
67. Mestdagh, P., et al., Non-coding RNAs and respiratory disease. Thorax, 2015. 70(4): p. 388-390.
指導教授 蘇立仁(LI-JEN SU) 審核日期 2019-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明