博碩士論文 105827001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.118.146.169
姓名 陳昭維(Zhao-Wei Chen)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 反覆編曲結構音樂對人體生理訊號之影響
(Exploring the interactions between physiological mechanisms and music riffs - the power beyond music)
相關論文
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 設計及製作可攜式非侵入性心搏輸出量監測系統
★ 開發可攜式十二導程心電圖和聲學雙功能系統於居家分析心臟電生理訊號★ 應用非侵入性方法來探究透析過程中血流動力學變化及心血管疾病之預後
★ 開發具深度學習應用於自動追蹤耳膜功能之數位耳鏡於中耳炎輔助系統★ 設計具低功耗無線傳輸及結合人工智慧判讀之長時間聽診監測系統
★ 實踐經驗模態分解於高度非穩態生理訊號之訊號特徵擷取★ Exploring Beat-to-Beat Photoplethysmography Features at the Upper and Lower Extremities as Potential Biomarkers for Early Diagnosis of Peripheral Arterial Occlusive Disease: A Comparative study with Ultrasound Doppler and Ankle-Brachial Index
★ 應用稀疏時頻表現式解析生理系統間非線性耦合機轉★ 基於功能性近紅外光腦光譜與腦電圖發展多模態腦活動無線監測系統
★ 脂質奈米顆粒在mRNA疫苗技術應用發展綜述★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患
★ 探討以非侵入方式的影像心衝擊圖形態特徵來評估左心室射血分數 : 基於數學模型與臨床驗證的初步研究★ 發展可用於肺部疾病患者呼吸音監測之高解析加速度陣列感測器
★ 以光體積變化描記儀作為男性勃起功能及陰莖血液動力學及性功能客觀指標之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人體的各類生理系統藉由穩定的自然節律持續得運作著,就好比音樂透過反覆樂節帶領著音符向前。感壓反射在血壓中造成十秒一次的週期變化,以此維持著血壓穩定,這樣固定的節律被稱作梅爾波。本實驗將探討音樂是否能用來增強血液中0.1Hz的梅爾波,我們在音樂的編曲結構中加入與梅爾波週期相同、不斷反覆的樂句,試圖找出能帶動血壓節律的最大影響因子並強化梅爾波的能量,增進體內接受器對血壓變化的敏感度,使血壓變化恆定趨穩,進一步幫助控制血壓。感壓反射不佳除了對血壓調控有影響外,也會增加罹患心血管疾病的風險,故增進感壓反射的功能相當重要。
實驗一共分為三組:(1) 希伯來奴隸大合唱-驗證前人研究 (2) 音量週期變化音樂 (3) 旋率週期變化音樂。透過三組實驗來探討如何在音樂的編曲上加入反覆的元素最能調控生理上的週期波動。請受測者依序聆聽三組音樂,每段音樂間隔五分鐘安靜休息,並同時測量心電訊號(ECG)、光電容積描記(PPG)、非侵入性連續血壓訊號及胸廓起伏訊號。
訊號收錄後,使用Matlab軟體進行生理訊號分析:(1)以快速傅立葉轉換定量訊號在各頻率下的強度,如此便能比較不同組別間血壓週期在0.1Hz下的貢獻多寡 (2)小波轉換進行時頻分析,以得知各類生理訊號隨著音樂進行時動態的強度變化 (3)用同步性分析(coherence)計算不同段音樂中心率與血壓變化之間的關聯。最後使用學生T檢定進行統計分析,計算各組訊號在音樂與基準線的顯著水準,以此判定三組音樂對生理訊號的影響。
以目前12位健康年輕成年人的實驗中,發現僅有週期旋律之音樂相較於基準測量值,血壓在0.1±0.025之間的能量有顯著的提升(p-value < 0.05),且血壓與心率間的同步性(coherence)亦有顯著的提升(p-value < 0.05),顯示這類型的音樂極可能能幫助人們增進梅約波的強度,使壓感反應更加靈敏。
摘要(英) There are many physiological systems orchestrated together in maintaining the function of our body under various conditions and the interconnected interactions among different control mechanisms can be analogous to the basic riffs of music, a combination of music notes and rhythm. Baroreflex, a crucial physiological mechanism for blood pressure regulation, operates around 0.1 Hz and produces a prominent oscillatory wave of blood pressure signal known as Mayer’s wave. This study aims to discuss whether the baroreflex can be enhanced by listening to the music with different combinations of music notes and rhythm at 0.1 Hz and which combination can enhance the amplitude of the Mayer’s wave the most. In addition, we believed that the homeostatic control of blood pressure can be improved as a consequence of enhancing the baroreflex sensitivity.
The recruited subjects will undergo three different sessions consecutively for this study and during each session, the subjects will listen to one of the three different combinations of musical arrangements: (1) the music with loop melody (2) the same music without loop melody (3) only loop melody without music. During session 1 and 2, their musical arrangement are the same, except for the loop melody (rhythm) and during session (3), there is only the loop melody without other music. Between each session, there are 5-minute resting period to wash out the possible effects of music. The electrocardiogram, photoplethysmography, non-invasive continuous blood pressure and chest inductance plethysmography signals will be simultaneously recorded during the study.
The data will be processed by Matlab and the amplitudes of the Mayer’s wave can be quantified by calculating the power of the spectrum around 0.1 Hz using fast Fourier transform. In addition, the spectrogram will be constructed by wavelet transform for observing the dynamical changes of the oscillation of Mayer’s wave. Finally, the effects of different combinations of musical arrangements can be further analyzed by different biostatistics methods and hope the results can benefit those people with diminished baroreflex sensitivity such as patients with cardiovascular diseases.
關鍵字(中) ★ 感壓反射
★ 梅爾波
★ 同步性
關鍵字(英) ★ Baroreflex
★ Mayer′s wave
★ Coherence
論文目次 碩博士論文電子檔授權書 iii
論文指導教授推薦書 v
摘要 vii
Abstract ix
目錄 xi
圖目錄 xiv
表目錄 xvi
第一章 緒論 1
1-1研究背景 1
1-2研究動機 1
1-3研究目的 2
第二章 文獻回顧 3
2-1音樂與情緒 3
2-2音樂的臨床應用 4
2-3音樂與生理 5
2-4 反覆音樂結構 9
第三章 基礎理論 11
3-1生理訊號 11
3-1-1心電圖 (ECG) 11
3-1-3胸廓起伏訊號 13
3-1-4非侵入式連續血壓訊號 14
3-2頻譜分析 (spectral analysis) 15
3-2-1快速傅立葉轉換 (Fast Fourier Transform) 15
3-2-2連續小波轉換(Continuous Wavelet Transform) 16
3-3相干性 (coherence) 17
第四章 材料與方法 18
4-1實驗設備 18
4-1-1 SOMNOtouch RESP 18
4-1-2 Nexfin BMEYE 非侵入性連續血壓監測裝置 19
4-1-3神訊生理訊號紀錄器 20
4-2研究對象 21
4-3音樂刺激 21
4-3-1希伯來奴隸大合唱-驗證前人研究 21
4-3-2音量十秒週期變化之音樂 23
4-3-3旋律十秒週期變化之音樂 24
4-4訊號處理 26
4-4-1能量定量 26
4-4-2時頻分析 27
4-4-3相干性分析 27
第五章 結果與討論 29
5-1梅約波能量增強 29
5-2梅約波與心率同步 33
5-3感壓反射靈敏度與血壓中心頻率 38
5-4 綜合討論 40
參考文獻 41
附錄一 人體試驗委員會同意書 44
附錄二 受測者同意書 46
附錄三 受測者基本資料表 49
參考文獻 [1] R. Takalo, I. Korhonen, S. Majahalme, M. Tuomisto, and V. Turjanmaa, "Circadian profile of low-frequency oscillations in blood pressure and heart rate in hypertension," American journal of hypertension, vol. 12, no. 9, pp. 874-881, 1999.
[2] K. Hevner, "Experimental studies of the elements of expression in music," The American Journal of Psychology, vol. 48, no. 2, pp. 246-268, 1936.
[3] S. Koelsch and L. Jancke, "Music and the heart," European heart journal, vol. 36, no. 44, pp. 3043-3049, 2015.
[4] L. Bernardi et al., "Dynamic interactions between musical, cardiovascular, and cerebral rhythms in humans," Circulation, vol. 119, no. 25, pp. 3171-3180, 2009.
[5] P. N. Juslin and P. Laukka, "Expression, perception, and induction of musical emotions: A review and a questionnaire study of everyday listening," Journal of New Music Research, vol. 33, no. 3, pp. 217-238, 2004.
[6] P. J. Rentfrow and S. D. Gosling, "The do re mi′s of everyday life: the structure and personality correlates of music preferences," Journal of personality and social psychology, vol. 84, no. 6, p. 1236, 2003.
[7] T. Sarkamo et al., "Music listening enhances cognitive recovery and mood after middle cerebral artery stroke," Brain, vol. 131, no. 3, pp. 866-876, 2008.
[8] J. Loewy, K. Stewart, A.-M. Dassler, A. Telsey, and P. Homel, "The effects of music therapy on vital signs, feeding, and sleep in premature infants," Pediatrics, pp. peds. 2012-1367, 2013.
[9] J. A. Klassen, Y. Liang, L. Tjosvold, T. P. Klassen, and L. Hartling, "Music for pain and anxiety in children undergoing medical procedures: a systematic review of randomized controlled trials," Ambulatory Pediatrics, vol. 8, no. 2, pp. 117-128, 2008.
[10] J. C. Aitken, S. Wilson, D. Coury, and A. M. Moursi, "The effect of music distraction on pain, anxiety and behavior in pediatric dental patients," Pediatric dentistry, vol. 24, no. 2, pp. 114-118, 2002.
[11] A. Ebneshahidi and M. Mohseni, "The effect of patient-selected music on early postoperative pain, anxiety, and hemodynamic profile in cesarean section surgery," The journal of alternative and complementary medicine, vol. 14, no. 7, pp. 827-831, 2008.
[12] X. Tan, C. J. Yowler, D. M. Super, and R. B. Fratianne, "The efficacy of music therapy protocols for decreasing pain, anxiety, and muscle tension levels during burn dressing changes: a prospective randomized crossover trial," Journal of Burn Care & Research, vol. 31, no. 4, pp. 590-597, 2010.
[13] G. Deng and B. R. Cassileth, "Integrative oncology: complementary therapies for pain, anxiety, and mood disturbance," CA: a cancer journal for clinicians, vol. 55, no. 2, pp. 109-116, 2005.
[14] L. Bernardi, C. Porta, and P. Sleight, "Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence," Heart, vol. 92, no. 4, pp. 445-452, 2006.
[15] E. Grossman, A. Grossman, M. Schein, R. Zimlichman, and B. Gavish, "Breathing-control lowers blood pressure," Journal of human hypertension, vol. 15, no. 4, p. 263, 2001.
[16] Y. Kumagai, M. Arvaneh, and T. Tanaka, "Familiarity affects entrainment of EEG in music listening," Frontiers in human neuroscience, vol. 11, p. 384, 2017.
[17] R. Fink, "Elvis everywhere: Musicology and popular music studies at the twilight of the canon," American Music, pp. 135-179, 1998.
[18] L. Bergfeldt and Y. Haga, "Power spectral and Poincare plot characteristics in sinus node dysfunction," Journal of Applied Physiology, vol. 94, no. 6, pp. 2217-2224, 2003.
[19] D. H. O′leary, J. F. Polak, R. A. Kronmal, T. A. Manolio, G. L. Burke, and S. K. Wolfson Jr, "Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults," New England Journal of Medicine, vol. 340, no. 1, pp. 14-22, 1999.
[20] A. Klein, T. Sauer, A. Jedynak, and W. Skrandies, "Conventional and wavelet coherence applied to sensory-evoked electrical brain activity," IEEE transactions on biomedical engineering, vol. 53, no. 2, pp. 266-272, 2006.
[21] I. Cook and A. Leuchter, "Synaptic dysfunction in Alzheimer′s disease: clinical assessment using quantitative EEG," Behavioural brain research, vol. 78, no. 1, pp. 15-23, 1996.
[22] C. Besthorn, H. Forstl, C. Geiger-Kabisch, H. Sattel, T. Gasser, and U. Schreiter-Gasser, "EEG coherence in Alzheimer disease," Clinical Neurophysiology, vol. 90, no. 3, pp. 242-245, 1994.
指導教授 林澂(Chen Lin) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明