博碩士論文 105827005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.143.24.92
姓名 蕭光紘(Kuang-Hung Hsiao)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 設計開發全氟碳複合奈米藥物載體對體表微生物多效抑菌功能之研究
(Development of Multifunctional Perfluorocarbon Drug Nano-Composites for Anti-Skin Microbes)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近十年,皮膚益生菌的研究層出不窮,其概念是源自於透過食用優格來促進腸胃道菌叢維持平衡並保持健康。透過過往的研究,表皮葡萄球菌 (Staphylococcus epidermidis/ S. epidermidis)藉由甘油的碳元刺激發酵反應,其發酵產物──短鏈脂肪酸可以有效地抑制痤瘡丙酸桿菌(Cutibacterium acnes/ C. acnes)生長。建立在此研究上,奈米科技可以提供一個同時乘載藥物,並提供益生菌碳元的新穎方法。近年來,有許多使用聚乙二醇(Polyethylene glycol, PEG)高分子或其衍生物來承載藥物的研究,而PEG高分子本身,係由環氧乙烷形成的聚合物,這樣的聚合物即是含有大量的碳元,亦可以提供表皮葡萄球菌產生短鏈脂肪酸。
本研究使用PEG衍生高分子作為藥物載體,包覆利福平(Rifampicin, RIF)及靛氰綠(Indocyanine green, ICG)形成奈米粒子,透過載體刺激益生菌產生活性,再釋放光治療及抗生素治療,三功效的治療方法來對抗嚴重的痤瘡病症。
在初步研究上,PEG之衍生物PEO-PPO-PEO高分子,與利福平、靛氰綠及全氟碳化物(Perfluorocarbon)透過超音波震盪形成雙層奈米粒子RIPNDs,其粒徑大小為240.7 ± 6.73 nm,表面電位為-20.9 ± 2.40 mV,而利福平與靛氰綠之包覆率為54.0 ± 10.5%及95.0 ± 4.84%。體外實驗針對痤瘡丙酸桿菌的胞殺效果上,在益生菌發酵液的環境及奈米粒子濃度高於20-μM ICG/3.8-μM RIF的條件下,並以雷射光(808 nm, 6 W/cm2)激發光治療效果,痤瘡丙酸桿菌得以根除。
而在進階的小鼠實驗中,被痤瘡丙酸桿菌感染的小鼠耳朵,透過發酵液及奈米粒子RIPNDs的光化治療後,相比於單用抗生素Rifampicin及單使用奈米粒子RIPNDs的光化治療,發炎程度下降了70.5%及23.1%,耳內抑菌程度增加97%及85%,其不只代表單用RIPNDs就可以有很好的治療效果,更衍生出發酵液在本研究的新穎性及重要性。
本研究奈米粒子RIPNDs不只可以有效抑制痤瘡丙酸桿菌,亦可以催化皮膚益生菌產生益生菌活性,這樣的治療方法我們稱之為光-化-益生抗菌治療,在未來臨床研究上擁有高度的潛力。
摘要(英) In past decade, researches of skin probiotics come out one and another. The concept is derived from the use of yogurt to promote the balance of the gastrointestinal flora and maintain body health. Previous studies show that Staphylococcus epidermidis (S. epidermidis) uses the carbon source from glycerol to stimulate the fermentation reaction. From fermentation products, short-chain fatty acids (SCFAs) can effectively inhibit Cutibacterium acnes (C. acnes, Propionibacterium acnes formerly) growth. Based on this research, nanotechnology can provide a novel way to simultaneously be a drug carrier and provide probiotic carbon source. In recent years, polyethylene glycol (PEG) polymers, which were formed from ethylene oxide, or their derivatives were studied to be drug vehicles. Such polymers contain a large amount of carbon source and be able to stimulate S. epidermidis generating SCFAs.
In this study, PEG-derived polymer was used as a drug carrier, encapsulating Rifampicin (RIF) and Indocyanine green (ICG) to form nanoparticles. Through the nanoparticles, the polymer shell stimulates the activity of probiotics, followed by phototherapy activation and antibiotics release. We anticipate this triple-functional treatment, named photo-chemo-biotic therapy, could combat severe acne symptoms.
In preliminary research, nanoparticle RIPNDs was fabricated by PEO-PPO-PEO polymer, rifampicin, indocyanine green and perfluorocarbon, forming a double-layer system through ultrasonic emulsification. The size and surface charge were 240.7 ± 6.73 nm and -20.9 ± 2.40 mV, respectively. And the encapsulation rates of rifampicin and indocyanine green were 54.0 ± 10.5% and 95.0 ± 4.84%, respectively. In vitro experiments aimed on the bactericidal effect of C. acnes, With the presence of probiotic fermentation product medium (FPM) and RIPNDs with concentration higher than 20-μM ICG/3.8-μM RIF under laser irradiation (808 nm, 6 W /cm2), C. acnes can be completely eradicated.
In the further mouse experiment, the infected mice ears by C. acnes were treated by photo-chemo-biotic therapy of RIPNDs. The degree of inflammation decreased 70.5% and 23.1% compared to rifampicin alone and nanoparticle RIPNDs with laser exposure (i.e. photo-chemo therapy), respectively. And the antibacterial effect increased 97% and 85%, respectively. This experiment not only shows RIPNDs gives a good therapeutic effect, but also point out the novelty and importance of probiotics effect.
To sum up the study, RIPNDs can not only effectively inhibit C. acnes growth, but also catalyze skin probiotics to generate probiotic activity. This photo-chemical-probiotic therapy are highly potential for use in the clinical anti-C. acnes treatment with reduced chemotoxicity
關鍵字(中) ★ 奈米粒子
★ 益生菌
★ 光治療
★ 全氟碳化物
★ 藥物輸送
關鍵字(英) ★ Nanoparticle
★ Probiotics
★ Phototherapy
★ Perfluorocarbon
★ Drug delivery
論文目次 摘要 i
ABSTRACT ii
ACKNOWLEDGEMENT iv
TABLE OF CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES x
CHAPTER I INTRODUCTION 1
1.1 Overview of Polymer 1
1.2 Nanoparticles 1
1.3 Polymeric nanoparticles 2
1.3.1 Micelle 2
1.3.2 Nanocapsule 2
1.3.3 Polymersome 3
1.4 Application of Nanoparticles 3
1.5 Human microbiota 4
1.6 Probiotics 5
1.7Antibacterial activity of Short-Chain-Fatty-Acid 6
1.7.1 Disruption of electron transport chain 7
1.7.2 disruption of oxidative phosphorylation 7
CHAPTER II DEVELOPMENT OF RIFAMPICIN-INDOCYANINE GREEN-LOADED PERFLUOROCARBON NANODROPLETS FOR PHOTO-CHEMO-PROBIOTIC ANTIMICROBIAL THERAPY 8
2.1 Introduction 8
2.2 Materials and methods 11
2.2.1 Preparation and characterization of RIPNDs 11
2.2.2 Measurements of stability and release kinetics of entrapped molecules 14
2.2.3 Measurements of RIPND-induced hyperthermia effect and singlet oxygen generation 14
2.2.4 Microbial cultivation 15
2.2.5 Evaluation of effect of RIPNDs on microbial fermentation 15
2.2.6 Examination of effect of RIPND-mediated probiotic inhibition on C. acnes growth 16
2.2.7 In vitro antimicrobial efficacy of RIPNDs 16
2.2.8 Statistical analysis 17
2.3 Results and discussion 17
2.3.1 Characterization of RIPNDs 17
2.3.2 Thermal stability of RIPND-entrapped ICG and release rate of RIF 19
2.3.3 Effects of hyperthermia and singlet oxygen generation of RIPNDs 23
2.3.4 Effects of RIPNDs on microbial fermentation efficiency 27
2.3.5 Antimicrobial capability of RIPNDs to C. acnes 29
2.4 Conclusion 33
CHAPER III NOVEL RIFAMPICIN-INDOCYANINE GREEN-LOADED PERFLUOROCARBON NANODROPLETS PROVIDE EFFECTIVE IN VIVO PHOTO-CHEMO-PROBIOTIC ANTIMICROBILITY AGAINST PATHOGEN OF ACNE CUTIBACTERIUM ACNES 34
3.1 Introduction 34
3.2 Materials and methods 36
3.2.1. Fabrication and characterization of the RIPNDs 36
3.2.2 Microbial cultivation 37
3.2.3 Measurement of antimicrobial efficacy of the RIPNDs in vitro 37
3.2.4 Cell culture 38
3.2.5 In vitro cytotoxicity assay 39
3.2.6 Animal study 39
3.2.7 Evaluation of antimicrobial effect of the RIPNDs in vivo 40
3.2.8 Measurement of inflammatory response in vivo 41
3.2.9 Histological study 41
3.2.10 Statistical analysis 41
3.3 Results and discussion 41
3.3.1 Morphological and physicochemical analyses of the RIPNDs 41
3.3.2 Antibacterial effect of the RIPNDs in vitro 43
3.3.3 Cytotoxicity of the FPM and RIPNDs in vitro 45
3.3.4 Anti-inflammatory response of the RIPNDs in vivo 47
3.3.5 Antimicrobial effect of the RIPNDs in vivo 50
3.4 Conclusions 53
CHAPTER IV CONCLUSION 54
REFERENCES 55
參考文獻 1. Satturwar, P.M., S.V. Fulzele, and A.K. Dorle, Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech, 2003. 4(4): p. E55.
2. Pandey, R. and G.K. Khuller, Polymer based drug delivery systems for mycobacterial infections. Curr Drug Deliv, 2004. 1(3): p. 195-201.
3. Chamarthy, S.P. and R. Pinal, Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 331(1): p. 25-30.
4. Alonso-Sande, M., et al., Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm, 2009. 72(2): p. 453-62.
5. Albanese, A., P.S. Tang, and W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng, 2012. 14: p. 1-16.
6. Ghosh Chaudhuri, R. and S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev, 2012. 112(4): p. 2373-433.
7. Elsabahy, M. and K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev, 2012. 41(7): p. 2545-61.
8. Bobo, D., et al., Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res, 2016. 33(10): p. 2373-87.
9. Zhong, Y., et al., Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014. 15(6): p. 1955-69.
10. Matsumura, Y. and K. Kataoka, Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci, 2009. 100(4): p. 572-9.
11. Deng, C., et al., Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012. 7: p. 467–480.
12. Ortiz, V., et al., Dissipative particle dynamics simulations of polymersomes. J Phys Chem B, 2005. 109(37): p. 17708-14.
13. Lee, Y.H. and Y.C. Lin, Anti-EGFR Indocyanine Green-Mitomycin C-Loaded Perfluorocarbon Double Nanoemulsion: A Novel Nanostructure for Targeted Photochemotherapy of Bladder Cancer Cells. Nanomaterials (Basel), 2018. 8(5).
14. Baker, C., et al., Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol, 2005. 5(2): p. 244-9.
15. Alarcon, P., M. Gonzalez, and E. Castro, [The role of gut microbiota in the regulation of the immune response]. Rev Med Chil, 2016. 144(7): p. 910-6.
16. Richardson, M., et al., Microbial Similarity between Students in a Common Dormitory Environment Reveals the Forensic Potential of Individual Microbial Signatures. mBio. 10(4): p. e01054-19.
17. Walker, A.R. and S. Datta, Identification of city specific important bacterial signature for the MetaSUB CAMDA challenge microbiome data. Biol Direct, 2019. 14(1): p. 11.
18. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-31.
19. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
20. Perry, R.J., et al., Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature, 2016. 534(7606): p. 213-7.
21. Cash, H.L., et al., Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 2006. 313(5790): p. 1126-30.
22. Hooper, L.V., et al., Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol, 2003. 4(3): p. 269-73.
23. Schauber, J., et al., Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. (0017-5749 (Print)).
24. Appanna, V., Human Microbes - The Power Within. 2018.
25. Ouwehand, A.C., S. Salminen, and E. Isolauri, Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek, 2002. 82(1-4): p. 279-89.
26. Kaila, M., et al., Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr Res, 1992. 32(2): p. 141-4.
27. Saavedra, J.M., et al., Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet, 1994. 344(8929): p. 1046-9.
28. Shornikova, A.V., et al., Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. (0891-3668 (Print)).
29. Kalliomaki, M., et al., Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet, 2001. 357(9262): p. 1076-9.
30. Leyden, J.J., K.J. McGinley, and B. Vowels, Propionibacterium acnes colonization in acne and nonacne. Dermatology, 1998. 196(1): p. 55-8.
31. Ryssel, H., et al., The antimicrobial effect of acetic acid—An alternative to common local antiseptics? Burns, 2009. 35(5): p. 695-700.
32. Sheu, C.W. and E. Freese, Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J Bacteriol, 1972. 111(2): p. 516-24.
33. Galbraith, H. and T.B. Miller, Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol, 1973. 36(4): p. 659-75.
34. Miller, R.D., K.E. Brown, and S.A. Morse, Inhibitory action of fatty acids on the growth of Neisseria gonorrhoeae. Infect Immun, 1977. 17(2): p. 303-12.
35. Boyaval, P., et al., Effects of free fatty acids on propionic acid bacteria. Lait, 1995. 75(1): p. 17-29.
36. Wojtczak, L. and M.R. Wieckowski, The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane. (0145-479X (Print)).
37. Peters, Jeanne S. and C.-K. Chin, Inhibition of photosynthetic electron transport by palmitoleic acid is partially correlated to loss of thylakoid membrane proteins. Plant Physiology and Biochemistry, 2003. 41(2): p. 117-124.
38. Greenway, D.L. and K.G. Dyke, Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J Gen Microbiol, 1979. 115(1): p. 233-45.
39. Beck, V., et al., Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J, 2007. 21(4): p. 1137-44.
40. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. (1474-547X (Electronic)).
41. Kraft, J. and A. Freiman, Management of acne. (1488-2329 (Electronic)).
42. Csukas, Z., B. Banizs, and F. Rozgonyi, Studies on the cytotoxic effects of Propionibacterium acnes strains isolated from cornea. Microb Pathog, 2004. 36(3): p. 171-4.
43. Montes, L.F. and W.H. Wilborn, Fine structure of Corynebacterium acnes. J Invest Dermatol, 1970. 54(4): p. 338-45.
44. Webster Gf Fau - Leyden, J.J., et al., Susceptibility of Propionibacterium acnes to killing and degradation by human neutrophils and monocytes in vitro. (0019-9567 (Print)).
45. Campbell, E.A., et al., Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell, 2001. 104(6): p. 901-12.
46. Thangaraju, P., Hyperpigmentation, a marker of rifampicin overuse in leprosy patient: An incidental finding. Sudan Medical Monitor, 2015. 10.
47. Kunimoto, D., et al., Severe hepatotoxicity associated with rifampin-pyrazinamide preventative therapy requiring transplantation in an individual at low risk for hepatotoxicity. Clin Infect Dis, 2003. 36(12): p. e158-61.
48. Garcia-Contreras, L., et al., Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J Antimicrob Chemother, 2006. 58(5): p. 980-6.
49. Hiremath, S.P. and R.N. Saha, Design and study of rifampicin oral controlled release formulations. Drug Deliv, 2004. 11(5): p. 311-7.
50. Cheng, L., et al., Functional nanomaterials for phototherapies of cancer. Chem Rev, 2014. 114(21): p. 10869-939.
51. Henderson, T.A. and L.D. Morries, Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? (1176-6328 (Print)).
52. Elman, M. and J. Lebzelter, Light therapy in the treatment of acne vulgaris. Dermatol Surg, 2004. 30(2 Pt 1): p. 139-46.
53. Mastropasqua, R., et al., Optical Coherence Tomography Angiography in Retinal Vascular Diseases and Choroidal Neovascularization. (2090-004X (Print)).
54. Schaafsma, B.E., et al., The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. Journal of Surgical Oncology, 2011. 104(3): p. 323-332.
55. Genina, E.A., et al., Low-intensity indocyanine-green laser phototherapy of acne vulgaris: pilot study. J Biomed Opt, 2004. 9(4): p. 828-34.
56. Shemesh, C.S., D. Moshkelani, and H. Zhang, Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer. Pharm Res, 2015. 32(5): p. 1604-14.
57. Mundra, V., et al., Micellar formulation of indocyanine green for phototherapy of melanoma. J Control Release, 2015. 220(Pt A): p. 130-140.
58. Desmettre, T., J.M. Devoisselle, and S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol, 2000. 45(1): p. 15-27.
59. Saxena, V., M. Sadoqi, and J. Shao, Degradation kinetics of indocyanine green in aqueous solution. J Pharm Sci, 2003. 92(10): p. 2090-7.
60. Iwase, T., et al., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 2010. 465(7296): p. 346-9.
61. Shu, M., et al., Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One, 2013. 8(2): p. e55380.
62. McLoughlin, R.F., et al., Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr, 2017. 106(3): p. 930-945.
63. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol, 2014. 98(1): p. 411-24.
64. Lowe, K.C., Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, 2002. 118(1): p. 19-26.
65. Bjornsson, O.G., et al., Physiochemical studies on indocyanine green: molar lineic absorbance, pH tolerance, activation energy and rate of decay in various solvents. J Clin Chem Clin Biochem, 1983. 21(7): p. 453-8.
66. Sun, C., C.-T. Lu, and Y.-Z. Zhao, Characterization of the Doxorubicin-Pluronic F68 Conjugate Micelles and Their Effect on Doxorubicin Resistant Human Erythroleukemic Cancer Cells. Journal of Nanomedicine & Nanotechnology, 2011. 02.
67. Saxena, V., M. Sadoqi, and J. Shao, Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. J Photochem Photobiol B, 2004. 74(1): p. 29-38.
68. Chittasupho, C., et al., ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci, 2009. 37(2): p. 141-50.
69. Vivek, R., et al., Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Appl Mater Interfaces, 2014. 6(9): p. 6469-80.
70. Hu, C., H. Feng, and C. Zhu, Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Colloids Surf B Biointerfaces, 2012. 95: p. 162-9.
71. Manca, M.L., et al., Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics, 2012. 4(4): p. 590-606.
72. Mohseni, M., K. Gilani, and S.A. Mortazavi, Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iran J Pharm Res, 2015. 14(1): p. 27-34.
73. Ferreira, B.M.S., J.B.V.S. Ramalho, and E.F. Lucas, Demulsification of Water-in-Crude Oil Emulsions by Microwave Radiation: Effect of Aging, Demulsifier Addition, and Selective Heating. Energy & Fuels, 2013. 27(2): p. 615-621.
74. Pei, S., et al., Light-based therapies in acne treatment. Indian Dermatol Online J, 2015. 6(3): p. 145-57.
75. Achermann, Y., et al., Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev, 2014. 27(3): p. 419-40.
76. Szmygin, P. and E. Barton. Propionibacterium acnes@ pathogenicity and possible role in intervertebral disc herniation. 2014.
77. Coffey, D.S., R.H. Getzenberg, and T.L. DeWeese, Hyperthermic biology and cancer therapies: a hypothesis for the "Lance Armstrong effect". JAMA, 2006. 296(4): p. 445-8.
78. Frings, J., E. Schramm, and B. Schink, Enzymes Involved in Anaerobic Polyethylene Glycol Degradation by Pelobacter venetianus and Bacteroides Strain PG1. Appl Environ Microbiol, 1992. 58(7): p. 2164-7.
79. Kao, M.S., et al., The mPEG-PCL Copolymer for Selective Fermentation of Staphylococcus lugdunensis Against Candida parapsilosis in the Human Microbiome. J Microb Biochem Technol, 2016. 8(4): p. 259-265.
80. Walsh, T.R., J. Efthimiou, and B. Dreno, Systematic review of antibiotic resistance in acne: an increasing topical and oral threat. Lancet Infect Dis, 2016. 16(3): p. e23-33.
81. Lee, D.J., G.S. Van Dyke, and J. Kim, Update on pathogenesis and treatment of acne. Curr Opin Pediatr, 2003. 15(4): p. 405-10.
82. Connolly, D., et al., Acne Scarring-Pathogenesis, Evaluation, and Treatment Options. J Clin Aesthet Dermatol, 2017. 10(9): p. 12-23.
83. Garg, T., Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artif Cells Nanomed Biotechnol, 2016. 44(1): p. 98-105.
84. Ochsendorf, F., Systemic antibiotic therapy of acne vulgaris. J Dtsch Dermatol Ges, 2006. 4(10): p. 828-41.
85. Levine, R.M. and J.E. Rasmussen, Intralesional corticosteroids in the treatment of nodulocystic acne. Arch Dermatol, 1983. 119(6): p. 480-1.
86. Sagransky, M., B.A. Yentzer, and S.R. Feldman, Benzoyl peroxide: a review of its current use in the treatment of acne vulgaris. Expert Opin Pharmacother, 2009. 10(15): p. 2555-62.
87. Ronald, L.A., et al., Treatment with isoniazid or rifampin for latent tuberculosis infection: population-based study of hepatotoxicity, completion and costs. Eur Respir J, 2020. 55(3).
88. Layton Am Fau - Dreno, B., et al., A review of the European Directive for prescribing systemic isotretinoin for acne vulgaris. (0926-9959 (Print)).
89. Wang, X., et al., Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform. J Colloid Interface Sci, 2020. 565: p. 483-493.
90. Quereux, G., et al., Photodynamic therapy with methyl-aminolevulinic acid for paucilesional mycosis fungoides: a prospective open study and review of the literature. J Am Acad Dermatol, 2013. 69(6): p. 890-7.
91. Grandi, V., et al., Indole 3-acetic acid-photodynamic therapy in the treatment of multiple actinic keratoses: A proof of concept pilot study. Photodiagnosis Photodyn Ther, 2016. 16: p. 17-22.
92. Choi, M.S., et al., Comparative study of the bactericidal effects of 5-aminolevulinic acid with blue and red light on Propionibacterium acnes. J Dermatol, 2011. 38(7): p. 661-6.
93. Lekakh, O., et al., Treatment of Acne Vulgaris With Salicylic Acid Chemical Peel and Pulsed Dye Laser: A Split Face, Rater-Blinded, Randomized Controlled Trial. J Lasers Med Sci, 2015. 6(4): p. 167-70.
94. Knight, J.M., Combined 400-600nm and 800-1200nm Intense Pulsed Phototherapy of Facial Acne Vulgaris. J Drugs Dermatol, 2019. 18(11): p. 1116-1122.
95. Das, S. and R.V. Reynolds, Recent advances in acne pathogenesis: implications for therapy. Am J Clin Dermatol, 2014. 15(6): p. 479-88.
96. Parth, S., et al., Acne vulgaris: An update on current therapy and advances in treatment strategies. International Journal of Pharmaceutical Sciences Review and Research, 2016. 40: p. 234-244.
97. Cherrick, G.R., et al., Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest, 1960. 39: p. 592-600.
98. Mottin, V.H.M. and E.S. Suyenaga, An approach on the potential use of probiotics in the treatment of skin conditions: acne and atopic dermatitis. Int J Dermatol, 2018. 57(12): p. 1425-1432.
99. Sikorska, H. and W. Smoragiewicz, Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int J Antimicrob Agents, 2013. 42(6): p. 475-81.
100. Lopes, E.G., et al., Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays. J Appl Microbiol, 2017. 122(2): p. 450-461.
101. Yu, Y., et al., Changing our microbiome: probiotics in dermatology. Br J Dermatol, 2020. 182(1): p. 39-46.
102. Wang, Y., et al., A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes. Int J Mol Sci, 2016. 17(11).
103. Hsiao, K.H., C.M. Huang, and Y.H. Lee, Development of Rifampicin-Indocyanine Green-Loaded Perfluorocarbon Nanodroplets for Photo-Chemo-Probiotic Antimicrobial Therapy. Front Pharmacol, 2018. 9: p. 1254.
104. Liu, P.F., et al., Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine, 2011. 29(17): p. 3230-8.
105. Kligman, A.M., An overview of acne. J Invest Dermatol, 1974. 62(3): p. 268-87.
106. Silva, F., et al., Cell death induced by HDACS inhibitors in ovarian cancer cell lines (serous and clear cells carcinomas) – role of NOTCH, TP53 and FN1. BMC Proceedings, 2010. 4: p. P36-P36.
107. Park, J.S., et al., Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int Immunopharmacol, 2007. 7(1): p. 70-7.
108. Lohman, R.J., et al., Differential Anti-inflammatory Activity of HDAC Inhibitors in Human Macrophages and Rat Arthritis. J Pharmacol Exp Ther, 2016. 356(2): p. 387-96.
109. Hara, T., et al., Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci, 2011. 100(9): p. 3594-601.
110. Moonwiriyakit, A., M. Koval, and C. Muanprasat, Pharmacological stimulation of G-protein coupled receptor 40 alleviates cytokine-induced epithelial barrier disruption in airway epithelial Calu-3 cells. Int Immunopharmacol, 2019. 73: p. 353-361.
111. Furustrand Tafin, U., et al., Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother, 2012. 56(4): p. 1885-91.
指導教授 黃俊銘 李宇翔(Chun-Ming Huang Yu-Hsiang Lee) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明