參考文獻 |
1. Satturwar, P.M., S.V. Fulzele, and A.K. Dorle, Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech, 2003. 4(4): p. E55.
2. Pandey, R. and G.K. Khuller, Polymer based drug delivery systems for mycobacterial infections. Curr Drug Deliv, 2004. 1(3): p. 195-201.
3. Chamarthy, S.P. and R. Pinal, Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 331(1): p. 25-30.
4. Alonso-Sande, M., et al., Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm, 2009. 72(2): p. 453-62.
5. Albanese, A., P.S. Tang, and W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng, 2012. 14: p. 1-16.
6. Ghosh Chaudhuri, R. and S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev, 2012. 112(4): p. 2373-433.
7. Elsabahy, M. and K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev, 2012. 41(7): p. 2545-61.
8. Bobo, D., et al., Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res, 2016. 33(10): p. 2373-87.
9. Zhong, Y., et al., Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014. 15(6): p. 1955-69.
10. Matsumura, Y. and K. Kataoka, Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci, 2009. 100(4): p. 572-9.
11. Deng, C., et al., Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012. 7: p. 467–480.
12. Ortiz, V., et al., Dissipative particle dynamics simulations of polymersomes. J Phys Chem B, 2005. 109(37): p. 17708-14.
13. Lee, Y.H. and Y.C. Lin, Anti-EGFR Indocyanine Green-Mitomycin C-Loaded Perfluorocarbon Double Nanoemulsion: A Novel Nanostructure for Targeted Photochemotherapy of Bladder Cancer Cells. Nanomaterials (Basel), 2018. 8(5).
14. Baker, C., et al., Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol, 2005. 5(2): p. 244-9.
15. Alarcon, P., M. Gonzalez, and E. Castro, [The role of gut microbiota in the regulation of the immune response]. Rev Med Chil, 2016. 144(7): p. 910-6.
16. Richardson, M., et al., Microbial Similarity between Students in a Common Dormitory Environment Reveals the Forensic Potential of Individual Microbial Signatures. mBio. 10(4): p. e01054-19.
17. Walker, A.R. and S. Datta, Identification of city specific important bacterial signature for the MetaSUB CAMDA challenge microbiome data. Biol Direct, 2019. 14(1): p. 11.
18. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-31.
19. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
20. Perry, R.J., et al., Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature, 2016. 534(7606): p. 213-7.
21. Cash, H.L., et al., Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 2006. 313(5790): p. 1126-30.
22. Hooper, L.V., et al., Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol, 2003. 4(3): p. 269-73.
23. Schauber, J., et al., Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. (0017-5749 (Print)).
24. Appanna, V., Human Microbes - The Power Within. 2018.
25. Ouwehand, A.C., S. Salminen, and E. Isolauri, Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek, 2002. 82(1-4): p. 279-89.
26. Kaila, M., et al., Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr Res, 1992. 32(2): p. 141-4.
27. Saavedra, J.M., et al., Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet, 1994. 344(8929): p. 1046-9.
28. Shornikova, A.V., et al., Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. (0891-3668 (Print)).
29. Kalliomaki, M., et al., Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet, 2001. 357(9262): p. 1076-9.
30. Leyden, J.J., K.J. McGinley, and B. Vowels, Propionibacterium acnes colonization in acne and nonacne. Dermatology, 1998. 196(1): p. 55-8.
31. Ryssel, H., et al., The antimicrobial effect of acetic acid—An alternative to common local antiseptics? Burns, 2009. 35(5): p. 695-700.
32. Sheu, C.W. and E. Freese, Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J Bacteriol, 1972. 111(2): p. 516-24.
33. Galbraith, H. and T.B. Miller, Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol, 1973. 36(4): p. 659-75.
34. Miller, R.D., K.E. Brown, and S.A. Morse, Inhibitory action of fatty acids on the growth of Neisseria gonorrhoeae. Infect Immun, 1977. 17(2): p. 303-12.
35. Boyaval, P., et al., Effects of free fatty acids on propionic acid bacteria. Lait, 1995. 75(1): p. 17-29.
36. Wojtczak, L. and M.R. Wieckowski, The mechanisms of fatty acid-induced proton permeability of the inner mitochondrial membrane. (0145-479X (Print)).
37. Peters, Jeanne S. and C.-K. Chin, Inhibition of photosynthetic electron transport by palmitoleic acid is partially correlated to loss of thylakoid membrane proteins. Plant Physiology and Biochemistry, 2003. 41(2): p. 117-124.
38. Greenway, D.L. and K.G. Dyke, Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J Gen Microbiol, 1979. 115(1): p. 233-45.
39. Beck, V., et al., Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J, 2007. 21(4): p. 1137-44.
40. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. (1474-547X (Electronic)).
41. Kraft, J. and A. Freiman, Management of acne. (1488-2329 (Electronic)).
42. Csukas, Z., B. Banizs, and F. Rozgonyi, Studies on the cytotoxic effects of Propionibacterium acnes strains isolated from cornea. Microb Pathog, 2004. 36(3): p. 171-4.
43. Montes, L.F. and W.H. Wilborn, Fine structure of Corynebacterium acnes. J Invest Dermatol, 1970. 54(4): p. 338-45.
44. Webster Gf Fau - Leyden, J.J., et al., Susceptibility of Propionibacterium acnes to killing and degradation by human neutrophils and monocytes in vitro. (0019-9567 (Print)).
45. Campbell, E.A., et al., Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell, 2001. 104(6): p. 901-12.
46. Thangaraju, P., Hyperpigmentation, a marker of rifampicin overuse in leprosy patient: An incidental finding. Sudan Medical Monitor, 2015. 10.
47. Kunimoto, D., et al., Severe hepatotoxicity associated with rifampin-pyrazinamide preventative therapy requiring transplantation in an individual at low risk for hepatotoxicity. Clin Infect Dis, 2003. 36(12): p. e158-61.
48. Garcia-Contreras, L., et al., Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J Antimicrob Chemother, 2006. 58(5): p. 980-6.
49. Hiremath, S.P. and R.N. Saha, Design and study of rifampicin oral controlled release formulations. Drug Deliv, 2004. 11(5): p. 311-7.
50. Cheng, L., et al., Functional nanomaterials for phototherapies of cancer. Chem Rev, 2014. 114(21): p. 10869-939.
51. Henderson, T.A. and L.D. Morries, Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? (1176-6328 (Print)).
52. Elman, M. and J. Lebzelter, Light therapy in the treatment of acne vulgaris. Dermatol Surg, 2004. 30(2 Pt 1): p. 139-46.
53. Mastropasqua, R., et al., Optical Coherence Tomography Angiography in Retinal Vascular Diseases and Choroidal Neovascularization. (2090-004X (Print)).
54. Schaafsma, B.E., et al., The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. Journal of Surgical Oncology, 2011. 104(3): p. 323-332.
55. Genina, E.A., et al., Low-intensity indocyanine-green laser phototherapy of acne vulgaris: pilot study. J Biomed Opt, 2004. 9(4): p. 828-34.
56. Shemesh, C.S., D. Moshkelani, and H. Zhang, Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer. Pharm Res, 2015. 32(5): p. 1604-14.
57. Mundra, V., et al., Micellar formulation of indocyanine green for phototherapy of melanoma. J Control Release, 2015. 220(Pt A): p. 130-140.
58. Desmettre, T., J.M. Devoisselle, and S. Mordon, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol, 2000. 45(1): p. 15-27.
59. Saxena, V., M. Sadoqi, and J. Shao, Degradation kinetics of indocyanine green in aqueous solution. J Pharm Sci, 2003. 92(10): p. 2090-7.
60. Iwase, T., et al., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 2010. 465(7296): p. 346-9.
61. Shu, M., et al., Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PLoS One, 2013. 8(2): p. e55380.
62. McLoughlin, R.F., et al., Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr, 2017. 106(3): p. 930-945.
63. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol, 2014. 98(1): p. 411-24.
64. Lowe, K.C., Perfluorochemical respiratory gas carriers: benefits to cell culture systems. Journal of Fluorine Chemistry, 2002. 118(1): p. 19-26.
65. Bjornsson, O.G., et al., Physiochemical studies on indocyanine green: molar lineic absorbance, pH tolerance, activation energy and rate of decay in various solvents. J Clin Chem Clin Biochem, 1983. 21(7): p. 453-8.
66. Sun, C., C.-T. Lu, and Y.-Z. Zhao, Characterization of the Doxorubicin-Pluronic F68 Conjugate Micelles and Their Effect on Doxorubicin Resistant Human Erythroleukemic Cancer Cells. Journal of Nanomedicine & Nanotechnology, 2011. 02.
67. Saxena, V., M. Sadoqi, and J. Shao, Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. J Photochem Photobiol B, 2004. 74(1): p. 29-38.
68. Chittasupho, C., et al., ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci, 2009. 37(2): p. 141-50.
69. Vivek, R., et al., Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. ACS Appl Mater Interfaces, 2014. 6(9): p. 6469-80.
70. Hu, C., H. Feng, and C. Zhu, Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Colloids Surf B Biointerfaces, 2012. 95: p. 162-9.
71. Manca, M.L., et al., Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics, 2012. 4(4): p. 590-606.
72. Mohseni, M., K. Gilani, and S.A. Mortazavi, Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iran J Pharm Res, 2015. 14(1): p. 27-34.
73. Ferreira, B.M.S., J.B.V.S. Ramalho, and E.F. Lucas, Demulsification of Water-in-Crude Oil Emulsions by Microwave Radiation: Effect of Aging, Demulsifier Addition, and Selective Heating. Energy & Fuels, 2013. 27(2): p. 615-621.
74. Pei, S., et al., Light-based therapies in acne treatment. Indian Dermatol Online J, 2015. 6(3): p. 145-57.
75. Achermann, Y., et al., Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev, 2014. 27(3): p. 419-40.
76. Szmygin, P. and E. Barton. Propionibacterium acnes@ pathogenicity and possible role in intervertebral disc herniation. 2014.
77. Coffey, D.S., R.H. Getzenberg, and T.L. DeWeese, Hyperthermic biology and cancer therapies: a hypothesis for the "Lance Armstrong effect". JAMA, 2006. 296(4): p. 445-8.
78. Frings, J., E. Schramm, and B. Schink, Enzymes Involved in Anaerobic Polyethylene Glycol Degradation by Pelobacter venetianus and Bacteroides Strain PG1. Appl Environ Microbiol, 1992. 58(7): p. 2164-7.
79. Kao, M.S., et al., The mPEG-PCL Copolymer for Selective Fermentation of Staphylococcus lugdunensis Against Candida parapsilosis in the Human Microbiome. J Microb Biochem Technol, 2016. 8(4): p. 259-265.
80. Walsh, T.R., J. Efthimiou, and B. Dreno, Systematic review of antibiotic resistance in acne: an increasing topical and oral threat. Lancet Infect Dis, 2016. 16(3): p. e23-33.
81. Lee, D.J., G.S. Van Dyke, and J. Kim, Update on pathogenesis and treatment of acne. Curr Opin Pediatr, 2003. 15(4): p. 405-10.
82. Connolly, D., et al., Acne Scarring-Pathogenesis, Evaluation, and Treatment Options. J Clin Aesthet Dermatol, 2017. 10(9): p. 12-23.
83. Garg, T., Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artif Cells Nanomed Biotechnol, 2016. 44(1): p. 98-105.
84. Ochsendorf, F., Systemic antibiotic therapy of acne vulgaris. J Dtsch Dermatol Ges, 2006. 4(10): p. 828-41.
85. Levine, R.M. and J.E. Rasmussen, Intralesional corticosteroids in the treatment of nodulocystic acne. Arch Dermatol, 1983. 119(6): p. 480-1.
86. Sagransky, M., B.A. Yentzer, and S.R. Feldman, Benzoyl peroxide: a review of its current use in the treatment of acne vulgaris. Expert Opin Pharmacother, 2009. 10(15): p. 2555-62.
87. Ronald, L.A., et al., Treatment with isoniazid or rifampin for latent tuberculosis infection: population-based study of hepatotoxicity, completion and costs. Eur Respir J, 2020. 55(3).
88. Layton Am Fau - Dreno, B., et al., A review of the European Directive for prescribing systemic isotretinoin for acne vulgaris. (0926-9959 (Print)).
89. Wang, X., et al., Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform. J Colloid Interface Sci, 2020. 565: p. 483-493.
90. Quereux, G., et al., Photodynamic therapy with methyl-aminolevulinic acid for paucilesional mycosis fungoides: a prospective open study and review of the literature. J Am Acad Dermatol, 2013. 69(6): p. 890-7.
91. Grandi, V., et al., Indole 3-acetic acid-photodynamic therapy in the treatment of multiple actinic keratoses: A proof of concept pilot study. Photodiagnosis Photodyn Ther, 2016. 16: p. 17-22.
92. Choi, M.S., et al., Comparative study of the bactericidal effects of 5-aminolevulinic acid with blue and red light on Propionibacterium acnes. J Dermatol, 2011. 38(7): p. 661-6.
93. Lekakh, O., et al., Treatment of Acne Vulgaris With Salicylic Acid Chemical Peel and Pulsed Dye Laser: A Split Face, Rater-Blinded, Randomized Controlled Trial. J Lasers Med Sci, 2015. 6(4): p. 167-70.
94. Knight, J.M., Combined 400-600nm and 800-1200nm Intense Pulsed Phototherapy of Facial Acne Vulgaris. J Drugs Dermatol, 2019. 18(11): p. 1116-1122.
95. Das, S. and R.V. Reynolds, Recent advances in acne pathogenesis: implications for therapy. Am J Clin Dermatol, 2014. 15(6): p. 479-88.
96. Parth, S., et al., Acne vulgaris: An update on current therapy and advances in treatment strategies. International Journal of Pharmaceutical Sciences Review and Research, 2016. 40: p. 234-244.
97. Cherrick, G.R., et al., Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest, 1960. 39: p. 592-600.
98. Mottin, V.H.M. and E.S. Suyenaga, An approach on the potential use of probiotics in the treatment of skin conditions: acne and atopic dermatitis. Int J Dermatol, 2018. 57(12): p. 1425-1432.
99. Sikorska, H. and W. Smoragiewicz, Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int J Antimicrob Agents, 2013. 42(6): p. 475-81.
100. Lopes, E.G., et al., Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays. J Appl Microbiol, 2017. 122(2): p. 450-461.
101. Yu, Y., et al., Changing our microbiome: probiotics in dermatology. Br J Dermatol, 2020. 182(1): p. 39-46.
102. Wang, Y., et al., A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes. Int J Mol Sci, 2016. 17(11).
103. Hsiao, K.H., C.M. Huang, and Y.H. Lee, Development of Rifampicin-Indocyanine Green-Loaded Perfluorocarbon Nanodroplets for Photo-Chemo-Probiotic Antimicrobial Therapy. Front Pharmacol, 2018. 9: p. 1254.
104. Liu, P.F., et al., Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine, 2011. 29(17): p. 3230-8.
105. Kligman, A.M., An overview of acne. J Invest Dermatol, 1974. 62(3): p. 268-87.
106. Silva, F., et al., Cell death induced by HDACS inhibitors in ovarian cancer cell lines (serous and clear cells carcinomas) – role of NOTCH, TP53 and FN1. BMC Proceedings, 2010. 4: p. P36-P36.
107. Park, J.S., et al., Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int Immunopharmacol, 2007. 7(1): p. 70-7.
108. Lohman, R.J., et al., Differential Anti-inflammatory Activity of HDAC Inhibitors in Human Macrophages and Rat Arthritis. J Pharmacol Exp Ther, 2016. 356(2): p. 387-96.
109. Hara, T., et al., Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci, 2011. 100(9): p. 3594-601.
110. Moonwiriyakit, A., M. Koval, and C. Muanprasat, Pharmacological stimulation of G-protein coupled receptor 40 alleviates cytokine-induced epithelial barrier disruption in airway epithelial Calu-3 cells. Int Immunopharmacol, 2019. 73: p. 353-361.
111. Furustrand Tafin, U., et al., Role of rifampin against Propionibacterium acnes biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother, 2012. 56(4): p. 1885-91. |