博碩士論文 105827603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:13.59.136.170
姓名 巴艾倫(Arun Balasubramaniam)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
(The Electrogenic Human Skin Microbiome Attenuates Ultraviolet-B Induced Skin Damage via Regulation of Irons and Free Radicals)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 微生物組中的細菌作為治療人類疾病的生物療法
★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症
★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria
★ 基於PEG的益生元影響皮膚細菌和皮膚電的發酵★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制
★ 基於PEG的益生元對痤瘡痤瘡桿菌的表皮葡萄球菌發酵和電的研究★ 設計開發全氟碳複合奈米藥物載體對體表微生物多效抑菌功能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 人類皮膚中豐富的微生物組精通細胞外電子轉移 (EET),並且天生就從事不同的分子任務。眾所周知,紫外線B (UV-B) 輻射會造成深層組織移位並減弱免疫反應。微生物影響之重要性對於紫外線引起之皮膚損傷是無庸置疑的。近年來,腸道微生物組藉由膜上電子傳遞蛋白產生電已經被證明,然而皮膚微生物組中的致電細菌表徵似乎完全沒有被表明。本研究藉由ferric-ferrozine方法概述了皮膚表皮葡萄球菌 (S. epidermidis) 是一種致電細菌菌株。甘油對於S. epidermidis的發酵之產電能力至關重要,在燃料電池中 (MFC) 通過測量電壓變化得知藉由5-甲基糠醛 (5-MF) 抑制顯著的減少了細菌產電量。本研究為了瞭解UV-B對S. epidermidis發電以及抗性的影響,開發了一個具有陽極和陰極的培養環境。儘管UV-B照射減少了細菌產電量,但長時間的甘油孵育會導致表S. epidermidis發酵,並增加產電量以抵消UV-B的影響。因此,人類皮膚原有之細菌群也許能作為生物標誌物即時的藉由產生之電量描繪出紫外線輻射。
  皮膚益生元對皮膚益生菌的探究尚未明確,也許能通過對現有皮膚護理之化合物進行改造與激發來適應新的症狀。利用四種已被國際化妝品成分命名法 (INCI) 註冊的化合物,研究其誘導S. epidermidis (一種在人體皮膚中富集的細菌) 發酵的能力。 最初用作於潤膚劑的Liquid coco-caprylate/caprate (LCC)有效地引發了S. epidermidis的發酵,產生短鏈脂肪酸 (SCFA) 並激發了強勁的電力。LCC加S. epidermidis在小鼠皮膚上的施用可顯著減少UV-B誘導的損傷,可通過形成之4-羥基壬烯醛(4-HNE) 、環丁烷嘧啶二聚體 (CPD) 和皮膚損傷來評估。研究發現,具有低表達丙酮酸脫氫酶 (pdh) 和磷酸乙酰基轉移酶 (pta) 基因之S. epidermidis S2的電原性很差。當將S. epidermidis S2以及LCC應用於小鼠皮膚時,S. epidermidis加LCC對UV-B誘導皮膚損傷的保護作用被大大抑制。探索LCC促進S. epidermidis抵抗UV-B的新適應症,提供了將INCI註冊化合物重新用作皮膚益生元的例子,使人類可以從皮膚微生物組普遍存在的細菌中受益。S. epidermidis加甘油在小鼠皮膚上的局部施用減輕了UV-B誘導的不穩定亞鐵離子(Fe2 +)、4-HNE和CPD的產生,表明 細菌產生的電能減弱由UV-B引起的氧化損傷。在S. epidermidis中存在的親環蛋白A中,調節EET系統中II型NADH氫化酶 (ndh2) 的基因表達和脫甲基甲萘醌-8 (DMK-8)的產生至關重要。抑制親環蛋白A消除了電子生成,並大大降低了S. epidermidis發酵的抗UV活性。本研究中我們首次證明了致電皮膚細菌可促進親環蛋白A介導的途徑產電,從而抵禦紫外線輻射問題。
摘要(英) A vibrant range of microbiome has been annexed in the skin that are proficient in extracellular electron transfer (EET) and beyond innately engaged in different molecular tasks. Ultraviolet-B (UV-B) radiation was indeed known to trigger deeper tissue shift as well as to attenuate the immune reaction. The importance of the microbiome was hardly debated in UV-induced skin insults. Bacteria have been using electron transport proteins throughout the membrane to generate electricity in the intestinal microbiome that has been identified recently. Although, the characterization of electrogenic bacteria in the skin microbiome seems to be almost completely unmapped. We have outlined the skin Staphylococcus epidermidis (S. epidermidis) as an electrogenic bacterial strain using a ferric-ferrozine investigation. The fermentation of glycerol is vital for the production of electricity in S. epidermidis while inhibition of 5-methyl furfural (5-MF) significantly reduced the bacterial electricity measured in a fuel cell by voltage changes (MFC). In order to investigate the impact of UV-B on electricity generation and UV-B bacterial resistance in S. epidermidis bacteria, a small-scale chamber with both anode and cathode was developed. Though UV-B decreased bacterial electricity, prolonged glycerol incubation led to fermentation of S. epidermidis and increased electricity to counteract UV-B effect. Electricity produced by human skin-based bacteria may be used as an adaptive biomarker to depict ultraviolet radiation in live time.
The exploration of skin prebiotics for skin probiotics have not been well defined and may be instigated by retrofitting existing skincare compounds for new indications. Four compounds that have been registered by the International Nomenclature of Cosmetic Ingredients (INCI) were included to study their abilities to induce the fermentation of Staphylococcus epidermidis (S. epidermidis), a bacterial species abundant in the human skin. Liquid coco-caprylate/caprate (LCC), originally used as an emollient, effectively initiated the fermentation of S. epidermidis, produced short-chain fatty acids (SCFAs), and provoked robust electricity. Application of LCC plus S. epidermidis on mouse skin significantly reduced ultraviolet B (UV-B)-induced injuries which were evaluated by the formation of 4-hydroxynonenal (4-HNE), cyclobutane pyrimidine dimers (CPD), and skin lesions. An S. epidermidis S2 isolate with low expressions of genes encoding pyruvate dehydrogenase (pdh), and phosphate acetyltransferase (pta) was found to be poorly electrogenic. The protective action of S. epidermidis plus LCC against UV-B-induced skin injuries was considerably suppressed when mouse skin was applied with LCC in combination with the S. epidermidis S2 isolate. Exploring new indication of LCC for promoting S. epidermidis against UV-B provided an example of repurposing INCI-registered compounds as skin prebiotics.
The host may benefit from the prevalent bacteria present in the skin microbiome. Topical application of S. epidermidis plus glycerol onto mouse skin mitigated the UV-B-induced production of labile ferrous ion (Fe2+), 4-HNE (4-hydroxy-2-nonenal), and cyclobutene pyrimidine dimers (CPD), demonstrating that bacterial electricity acts to attenuate oxidative damage caused by UV-B. The regulation of gene expression of Type II NADH hydrogenase gene (ndh2) and production of demethylmenaquinone-8 (DMK-8) in EET systems for the production of electricity was critical in Cyclophilin A present in S. epidermidis. Suppression of cyclophilin A axed electron generation and considerably reduced the anti-UV activity of S. epidermidis fermentation. Cumulatively, we demonstrate for the first time that electrogenic skin bacteria facilitate a cyclophilin A-mediated pathway to generate electricity as a defense against UV.
關鍵字(中) ★ 皮肤
★ 微生物组
★ 紫外线
★ 癌症
★ 益生菌
★ 预科
關鍵字(英) ★ Skin
★ Microbiome
★ Ultraviolet rays
★ Cancer
★ Probiotics
★ Prebiotics
論文目次 Abstract in Chinese ii
Abstract in English viii
Acknowledgement xi
List of tables xvii
List of figures xviii
Abbreviations xxvi
Chapter 1- Introduction 1
1.1. The Human skin microbiome 1
1.2. Host-microbiome Interaction 2
1.3. Skin probiotic bacteria 3
1.4. Skin prebiotics 4
1.5. Extracellular electron transfer 5
1.6. Electrons as antioxidant 5
1.7. Staphylococcus epidermidis 6
1.8. UV-B irradiation 7
Chapter 2 -Skin Bacteria Mediate Glycerol Fermentation to Produce Electricity and Resist UV-B 9
9
2.1. Introduction 9
2.2. Materials and methods 10
2.2.1. Ethics statement 10
2.2.2. Bacteria identification 11
2.2.3. 5-Methyl furfural mediated fermentation inhibition 11
2.2.4. Electrogenic bacteria screening 11
2.2.5. Minimum bactericidal concentration (MBC) assay 12
2.2.6. Microbial fuel cell construction 12
2.2.7. Electricity detection in vitro 13
2.2.8. Statistical analysis 13
2.3. Results 14
2.3.1. Electrogenic bacteria screening by TSB agar-based ferrozine overlay assay 14
2.3.2. The electricity generation from glycerol mediated S. epidermidis ATCC 12228 fermentation through microbial fuel cell (MFC) technology 16
2.4. Discussion 22
Chapter 3- Repurposing INCI-registered compounds as skin prebiotics for probiotic Staphylococcus epidermidis against UV-B 26
3.1. Introduction 26
3.2. Material and methods 29
3.2.1. Ethics statement: 29
3.2.2. Bacterial fermentation: 29
3.2.3. Electricity detection: 30
3.2.4. Cyclic voltammetry: 30
3.2.5. Extraction of bacterial RNA: 31
3.2.6. Real-time qPCR (RT-qPCR): 31
3.2.7. GC-MS analysis: 32
3.3.8. UV-B exposure: 32
3.2.8. Western blotting: 33
3.2.9. Hematoxylin and Eosin (H&E) staining: 33
3.2.10. Minimum bactericidal concentration (MBC) 34
3.2.11. Statistical analysis: 34
3.3. Results 34
3.3.1. INCI-registered compounds function as skin probiotics for induction of SCFA production and bacterial electricity 34
3.3.2. Topical application of S. epidermidis plus LCC reduced UV-B-induced the formation of 4-hydroxynonenal (4-HNE) and cyclobutane pyrimidine dimer (CPD) 37
3.3.3. The S. epidermidis S2 isolate with low expression of pdh and pta genes was poorly electrogenic 39
3.3.4. LCC plus S. epidermidis S2 isolate did not confer protection against UV-B-induced skin injuries 40
Chapter 4- Electrogenic skin Staphylococcus epidermidis protects against ultraviolet damage 46
4.1. Introduction 46
4.2. Materials and method 49
4.2.1. Ethics statement 49
4.2.2. Bacterial culture and fermentation 50
4.2.3. Electricity detection in vitro 50
4.2.4. Cyclic voltammetry 51
4.2.5. Ferrozine assay 51
4.2.6. UV-B exposure 52
4.2.7. Iron calorimetric assay and labile iron staining 52
4.2.8. Western blotting 53
4.2.9. Intracellular ROS detection 54
4.2.10. Extraction of bacterial RNA 54
4.2.11. Real-time PCR 55
4.2.12. Mass spectrometry 55
4.2.13. Statistical analysis 56
4.3. Results 56
4.3.1. S. epidermidis produced electricity via glycerol fermentation 56
4.3.2. Electrons generated by S. epidermidis engage in the redox cycling of iron 59
4.3.3. S. epidermidis fermentation mitigated UV-B induced labile irons in skin 61
4.3.4. S. epidermidis fermentation suppresses UV-B-induced 4-HNE (4-hydroxy-2-nonenal) and cyclobutene pyrimidine dimer (CPD) 62
4.3.5. Cyclophilin A is an essential mediator of S. epidermidis’s electrogenic inhibition of 4-HNE production 64
4.4. Discussions 67
Chapter 5- Conclusion and outlook 78
Vita 81
Publications 82
Bibliography 83
參考文獻 1. Scharschmidt, T.C. and M.A. Fischbach, What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discovery Today: Disease Mechanisms, 2013. 10(3): p. e83-e89.
2. Belkaid, Y. and J.A.J.S. Segre, Dialogue between skin microbiota and immunity. 2014. 346(6212): p. 954-959.
3. Grice, E.A.J.G.r., The intersection of microbiome and host at the skin interface: genomic-and metagenomic-based insights. 2015. 25(10): p. 1514-1520.
4. Chen, Y.E. and H.J.J.o.t.A.A.o.D. Tsao, The skin microbiome: current perspectives and future challenges. 2013. 69(1): p. 143-155. e3.
5. Byrd, A.L., Y. Belkaid, and J.A. Segre, The human skin microbiome. Nature Reviews Microbiology, 2018. 16(3): p. 143-155.
6. Grice, E.A., et al., A diversity profile of the human skin microbiota. 2008. 18(7): p. 1043-1050.
7. Shibagaki, N., et al., Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Scientific Reports, 2017. 7(1): p. 10567.
8. Bek-Thomsen, M., H.B. Lomholt, and M.J.J.o.c.m. Kilian, Acne is not associated with yet-uncultured bacteria. 2008. 46(10): p. 3355-3360.
9. Dekio, I., et al., Characterization of skin microbiota in patients with atopic dermatitis and in normal subjects using 16S rRNA gene-based comprehensive analysis. 2007. 56(12): p. 1675-1683.
10. Frank, D.N., et al., Microbial diversity in chronic open wounds. 2009. 17(2): p. 163-172.
11. Gao, Z., et al., Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. 2008. 3(7): p. e2719.
12. Grice, E.A., et al., Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. 2010. 107(33): p. 14799-14804.
13. Kong, H.H.J.T.i.m.m., Skin microbiome: genomics-based insights into the diversity and role of skin microbes. 2011. 17(6): p. 320-328.
14. Schommer, N.N. and R.L.J.T.i.m. Gallo, Structure and function of the human skin microbiome. 2013. 21(12): p. 660-668.
15. Simmering, R., R.J.D.H. Breves, and V. Zeitschrift fur Dermatologie, und Verwandte Gebiete, Pre-and probiotic cosmetics. 2009. 60(10): p. 809-814.
16. Bojar, R.A. and K.T.J.C.i.d. Holland, Acne and Propionibacterium acnes. 2004. 22(5): p. 375-379.
17. Yang, A.-J., et al., A Microtube Array Membrane (MTAM) encapsulated live fermenting Staphylococcus epidermidis as a skin probiotic patch against Cutibacterium acnes. 2019. 20(1): p. 14.
18. Scholz-Ahrens, K.E., et al., Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats—impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over. 2016. 3: p. 41-50.
19. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. 2014. 98(1): p. 411-424.
20. Keshari, S., et al., Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. Int J Mol Sci, 2019. 20(18).
21. Liu, X., et al., Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Applied microbiology and biotechnology, 2019. 103(3): p. 1535-1544.
22. Shi, L., et al., Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016. 14(10): p. 651.
23. Kim, M.Y., et al., Metabolic shift of Klebsiella pneumoniae L17 by electrode-based electron transfer using glycerol in a microbial fuel cell. Bioelectrochemistry, 2019. 125: p. 1-7.
24. Light, S.H., et al., A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 2018. 562(7725): p. 140-144.
25. Wang, W., et al., Bacterial Extracellular Electron Transfer Occurs in Mammalian Gut. Analytical chemistry, 2019. 91(19): p. 12138-12141.
26. Pankratova, G., et al., Extracellular electron transfer by the Gram-positive bacterium Enterococcus faecalis. Biochemistry, 2018. 57(30): p. 4597-4603.
27. Pankratova, G., L. Hederstedt, and L. Gorton, Extracellular electron transfer features of Gram-positive bacteria. Analytica chimica acta, 2019. 1076: p. 32-47.
28. Xayarath, B., F. Alonzo III, and N.E. Freitag, Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS pathogens, 2015. 11(3).
29. Finke, N., V. Vandieken, and B.B. Jørgensen, Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, 2007. 59(1): p. 10-22.
30. Chen, C., et al., Use of acetate, propionate, and butyrate for reduction of nitrate and sulfate and methanogenesis in microcosms and bioreactors simulating an oil reservoir. Appl. Environ. Microbiol., 2017. 83(7): p. e02983-16.
31. Sorokin, D.Y., E. Detkova, and G. Muyzer, Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles, 2010. 14(1): p. 71-77.
32. Halliwell, B., The chemistry of free radicals. Toxicology and industrial health, 1993. 9(1-2): p. 1-21.
33. Oschman, J.L., Can electrons act as antioxidants? A review and commentary. The Journal of Alternative and Complementary Medicine, 2007. 13(9): p. 955-967.
34. Meghji, S., et al., Staphylococcus epidermidis produces a cell-associated proteinaceous fraction which causes bone resorption by a prostanoid-independent mechanism: relevance to the treatment of infected orthopaedic implants. British journal of rheumatology, 1997. 36(9): p. 957-963.
35. Byrd Allyson, L., B. Yasmine, and A. Segre Julia, The human skin microbiome [J]. Nat Rev Microbiol, 2018. 16: p. 143-155.
36. Kloos, W.E. and M.S. Musselwhite, Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl. Environ. Microbiol., 1975. 30(3): p. 381-395.
37. Wang, Y., et al., A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis fermentation against Propionibacterium acnes. International journal of molecular sciences, 2016. 17(11): p. 1870.
38. Kao, M.S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin‐resistant Staphylococcus aureus. Biotechnology journal, 2017. 12(4).
39. Wegh, C.A., et al., Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. International journal of molecular sciences, 2019. 20(19): p. 4673.
40. Stenesh, J., The Citric Acid Cycle, in Biochemistry. 1998, Springer. p. 273-291.
41. Cate, R.L. and T.E. Roche, Function and regulation of mammalian pyruvate dehydrogenase complex. Acetylation, interlipoyl acetyl transfer, and migration of the pyruvate dehydrogenase component. Journal of Biological Chemistry, 1979. 254(5): p. 1659-1665.
42. Lazzarino, G., et al., Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement. International journal of molecular sciences, 2019. 20(22): p. 5774.
43. Liu, H., S. Cheng, and B.E. Logan, Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environmental Science & Technology, 2005. 39(2): p. 658-662.
44. Stojiljković, D., D. Pavlović, and I. Arsić, Oxidative stress, skin aging and antioxidant therapy/oksidacioni stres, starenje kože i antioksidaciona terapija. Acta Facultatis Medicae Naissensis, 2014. 31(4): p. 207-217.
45. Narendhirakannan, R. and M.A.C. Hannah, Oxidative stress and skin cancer: an overview. Indian Journal of Clinical Biochemistry, 2013. 28(2): p. 110-115.
46. Kehrer, J.P., Free radicals as mediators of tissue injury and disease. Critical reviews in toxicology, 1993. 23(1): p. 21-48.
47. Aruoma, O., Nutrition and health aspects of free radicals and antioxidants. Food and Chemical Toxicology, 1994. 32(7): p. 671-683.
48. Bowden, G.T., Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nature Reviews Cancer, 2004. 4(1): p. 23-35.
49. Afaq, F., V.M. Adhami, and H. Mukhtar, Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005. 571(1-2): p. 153-173.
50. Harned, J., A. Grimes, and M. McGahan, The Effect of UVB Irradiation on Ferritin Subunit Synthesis, Ferritin Assembly and Fe Metabolism in Cultured Canine Lens Epithelial Cells¶. Photochemistry and photobiology, 2003. 77(4): p. 440-445.
51. Karkucinska-Wieckowska, A., et al., Increased reactive oxygen species (ROS) production and low catalase level in fibroblasts of a girl with MEGDEL association (Leigh syndrome, deafness, 3-methylglutaconic aciduria). Folia Neuropathol, 2011. 49(01): p. 56-63.
52. Bickers, D.R. and M. Athar, Oxidative stress in the pathogenesis of skin disease. Journal of Investigative Dermatology, 2006. 126(12): p. 2565-2575.
53. Afaq, F., et al., Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. Journal of Investigative Dermatology, 2007. 127(1): p. 222-232.
54. Melnikova, V.O., et al., Fate of UVB-induced p53 mutations in SKH-hr1 mouse skin after discontinuation of irradiation: relationship to skin cancer development. Oncogene, 2005. 24(47): p. 7055-7063.
55. Halliday, G.M. and J.G. Lyons, Inflammatory doses of UV may not be necessary for skin carcinogenesis. Photochemistry and photobiology, 2008. 84(2): p. 272-283.
56. De Gruijl, F.R. and H. Rebel, Early events in UV carcinogenesis—DNA damage, target cells and mutant p53 foci. Photochemistry and photobiology, 2008. 84(2): p. 382-387.
57. Nichols, J.A. and S.K. Katiyar, Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Archives of dermatological research, 2010. 302(2): p. 71-83.
58. Schwarz, T., 25 years of UV‐induced immunosuppression mediated by T cells—from disregarded T suppressor cells to highly respected regulatory T cells. Photochemistry and photobiology, 2008. 84(1): p. 10-18.
59. Halliday, G.M. and S. Rana, Waveband and dose dependency of sunlight‐induced immunomodulation and cellular changes. Photochemistry and photobiology, 2008. 84(1): p. 35-46.
60. Afaq, F. and H. Mukhtar, Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Experimental dermatology, 2006. 15(9): p. 678-684.
61. Elsner, P., Antimicrobials and the skin physiological and pathological flora. Curr Probl Dermatol, 2006. 33: p. 35-41.
62. Mohammadifar, M., et al., Biopower-on-Skin: Electricity generation from sweat-eating bacteria for self-powered E-Skins. Nano Energy, 2020. 75: p. 104994.
63. Byrne, J.M., et al., Redox cycling of Fe (II) and Fe (III) in magnetite by Fe-metabolizing bacteria. Science, 2015. 347(6229): p. 1473-1476.
64. Kumar, R., et al., Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. International Journal of Energy Research, 2018. 42(2): p. 369-394.
65. Kumar, S.S., et al., Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams. Fuel, 2019. 254: p. 115526.
66. Kumar, R., L. Singh, and A. Zularisam, Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 2016. 56: p. 1322-1336.
67. Nevin, K.P., et al., Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental microbiology, 2008. 10(10): p. 2505-2514.
68. Pant, D., et al., A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource technology, 2010. 101(6): p. 1533-1543.
69. Oviedo, C., et al., A screening method for detecting iron reducing wood-rot fungi. Biotechnology Letters, 2003. 25(11): p. 891-893.
70. Keogh, D., et al., Extracellular Electron Transfer Powers <span class="named-content genus-species" id="named-content-1">Enterococcus faecalis</span> Biofilm Metabolism. 2018. 9(2): p. e00626-17.
71. Pankratova, G., et al., Extracellular Electron Transfer by the Gram-Positive Bacterium Enterococcus faecalis. Biochemistry, 2018. 57(30): p. 4597-4603.
72. Nueno-Palop, C. and A. Narbad, Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. Int J Food Microbiol, 2011. 145(2-3): p. 390-4.
73. Al Atya, A.K., et al., Probiotic potential of Enterococcus faecalis strains isolated from meconium. 2015. 6(227).
74. Palmqvist, E. and B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 2000. 74(1): p. 25-33.
75. Moscoviz, R., et al., Electro-Fermentation: How To Drive Fermentation Using Electrochemical Systems. Trends in Biotechnology, 2016. 34(11): p. 856-865.
76. Traisaeng, S., et al., A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins, 2019. 11(6): p. 311.
77. Kao, M.-S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnology journal, 2017. 12(4): p. 10.1002/biot.201600399.
78. Velasquez, S., et al., Evaluation of hydrolysis and fermentation rates in microbial fuel cells. Applied microbiology and biotechnology, 2011. 90: p. 789-98.
79. Fluhr, J.W., R. Darlenski, and C. Surber, Glycerol and the skin: holistic approach to its origin and functions. Br J Dermatol, 2008. 159(1): p. 23-34.
80. Yang, J.J., et al., Commensal Staphylococcus aureus Provokes Immunity to Protect against Skin Infection of Methicillin-Resistant Staphylococcus aureus. Int J Mol Sci, 2018. 19(5).
81. Cahoon, L.A. and N.E. Freitag, The electrifying energy of gut microbes. 2018, Nature Publishing Group.
82. Liu, H., et al., Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. 2005. 39(2): p. 658-662.
83. Liu, H., H.J.W.s. Fang, and technology, Hydrogen production from wastewater by acidogenic granular sludge. 2003. 47(1): p. 153-158.
84. Gilmore, M.S., et al., Enterococci as Indicators of Environmental Fecal Contamination--Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. 2014.
85. Frankenberg, L., M. Brugna, and L. Hederstedt, Enterococcus faecalis heme-dependent catalase. Journal of Bacteriology, 2002. 184(22): p. 6351-6356.
86. Winstedt, L., et al., Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. Journal of bacteriology, 2000. 182(13): p. 3863-3866.
87. Baureder, M. and L. Hederstedt, Heme proteins in lactic acid bacteria, in Advances in microbial physiology. 2013, Elsevier. p. 1-43.
88. Borisov, V.B., et al., The cytochrome bd respiratory oxygen reductases. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2011. 1807(11): p. 1398-1413.
89. Safarian, S., et al., Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science, 2016. 352(6285): p. 583-586.
90. Pankratova, G. and L. Gorton, Electrochemical communication between living cells and conductive surfaces. Current Opinion in Electrochemistry, 2017. 5(1): p. 193-202.
91. Finke, N., V. Vandieken, and B.B.J.F.M.E. Jørgensen, Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. 2007. 59(1): p. 10-22.
92. Chen, C., et al., Use of acetate, propionate, and butyrate for reduction of nitrate and sulfate and methanogenesis in microcosms and bioreactors simulating an oil reservoir. 2017. 83(7): p. e02983-16.
93. Sorokin, D.Y., E. Detkova, and G.J.E. Muyzer, Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. 2010. 14(1): p. 71-77.
94. Kim, M.Y., et al., Metabolic shift of Klebsiella pneumoniae L17 by electrode-based electron transfer using glycerol in a microbial fuel cell. 2019. 125: p. 1-7.
95. Antal Jr, M.J., W.S. Mok, and G.N.J.C.r. Richards, Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. 1990. 199(1): p. 91-109.
96. Antal Jr, M.J., et al., Mechanism of formation of 2-furaldehyde from D-xylose. 1991. 217: p. 71-85.
97. Kumar, M., et al., 5-Methyl Furfural Reduces the Production of Malodors by Inhibiting Sodium l-Lactate Fermentation of Staphylococcus epidermidis: Implication for Deodorants Targeting the Fermenting Skin Microbiome. 2019. 7(8): p. 239.
98. Ibraheem, O. and B.K.J.I.j.o.b.s. Ndimba, Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. 2013. 9(6): p. 598.
99. Monlau, F., et al., Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. 2014. 32(5): p. 934-951.
100. Almeida, J.R., et al., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. 2007. 82(4): p. 340-349.
101. Vincent, W.F. and S. Roy, Solar ultraviolet-B radiation and aquatic primary production: damage, protection, and recovery. Environmental Reviews, 1993. 1(1): p. 1-12.
102. Rastogi, R.P., et al., Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′, 7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochemical & biophysical research communications, 2010. 397(3): p. 603-607.
103. Singh, G., et al., Enzymatic and non-enzymatic defense mechanisms against ultraviolet-B radiation in two Anabaena species. Process biochemistry, 2013. 48(5-6): p. 796-802.
104. Herrling, T., et al., UV-induced free radicals in the skin detected by ESR spectroscopy and imaging using nitroxides. Free Radical Biology & Medicine, 2003. 35(1): p. 59-67.
105. Santos, A.L., et al., Contribution of reactive oxygen species to UV-B-induced damage in bacteria. Journal of Photochemistry & Photobiology B: Biology, 2012. 117: p. 40-46.
106. Jagger, J., Solar-UV actions on living cells. 1985.
107. Zenoff, V.F., et al., Diverse UV-B Resistance of Culturable Bacterial Community from High-Altitude Wetland Water. Current Microbiology, 2006. 52(5): p. 359-362.
108. Silva, Y.P., A. Bernardi, and R.L. Frozza, The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in endocrinology, 2020. 11: p. 25-25.
109. Keshari, S., et al., Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. International journal of molecular sciences, 2019. 20(18): p. 4477.
110. Slater, T.F., Free-radical mechanisms in tissue injury. The Biochemical journal, 1984. 222(1): p. 1-15.
111. Lobo, V., et al., Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 2010. 4(8): p. 118-126.
112. Wang, Y., et al., Antioxidant Properties of Probiotic Bacteria. Nutrients, 2017. 9(5): p. 521.
113. Liu, X., et al., Green tea polyphenols function as prooxidants to inhibit Pseudomonas aeruginosa and induce the expression of oxidative stress-related genes. Folia Microbiol (Praha), 2013. 58(3): p. 211-7.
114. Rismani-Yazdi, H., et al., Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnology and Bioengineering, 2007. 97(6): p. 1398-1407.
115. Rismani-Yazdi, H., et al., Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. 2007. 97(6): p. 1398-1407.
116. Kan, J., et al., Current Production by Bacterial Communities in Microbial Fuel Cells Enriched from Wastewater Sludge with Different Electron Donors. Environmental Science & Technology, 2011. 45(3): p. 1139-1146.
117. Sleigh, S.H. and C.L. Barton, Repurposing Strategies for Therapeutics. Pharmaceutical Medicine, 2010. 24(3): p. 151-159.
118. Ashburn, T.T. and K.B. Thor, Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery, 2004. 3(8): p. 673-683.
119. Tartaglia, L.A., Complementary new approaches enable repositioning of failed drug candidates. Expert Opinion on Investigational Drugs, 2006. 15(11): p. 1295-1298.
120. del Rio, C. and P.N. Malani, COVID-19—New Insights on a Rapidly Changing Epidemic. JAMA, 2020. 323(14): p. 1339-1340.
121. Guy, R.K., et al., Rapid repurposing of drugs for COVID-19. 2020. 368(6493): p. 829-830.
122. Li, G. and E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov, 2020. 19(3): p. 149-150.
123. Sanders, J.M., et al., Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA, 2020. 323(18): p. 1824-1836.
124. Beigel, J.H., et al., Remdesivir for the Treatment of Covid-19 — Preliminary Report. 2020.
125. Tomazini, B.M., et al., COVID-19-associated ARDS treated with DEXamethasone (CoDEX): Study design and rationale for a randomized trial. 2020: p. 2020.06.24.20139303.
126. Oláh, A., et al., Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. The Journal of Clinical Investigation, 2014. 124(9): p. 3713-3724.
127. Abels, C. and M. Soeberdt, Can we teach old drugs new tricks?-Repurposing of neuropharmacological drugs for inflammatory skin diseases. Exp Dermatol, 2019. 28(9): p. 1002-1009.
128. Zeeuwen, P.L., et al., Microbiome and skin diseases. 2013. 13(5): p. 514-520.
129. Edmonds-Wilson, S.L., et al., Review of human hand microbiome research. Journal of Dermatological Science, 2015. 80(1): p. 3-12.
130. Grice, E.A., et al., A diversity profile of the human skin microbiota. Genome Res, 2008. 18(7): p. 1043-50.
131. Kao, M.-S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnology journal, 2016. 12.
132. Sohn, M., et al., Effect of emollients on UV filter absorbance and sunscreen efficiency. 2020. 205: p. 111818.
133. Subongkot, T., T.J.C. Sirirak, and S.B. Biointerfaces, Development and skin penetration pathway evaluation of microemulsions for enhancing the dermal delivery of celecoxib. 2020: p. 111103.
134. Penfield, K. A look behind the salt curve: an examination of thickening mechanisms in shampoo formulations. in AIP Conference Proceedings. 2008. American Institute of Physics.
135. Johnson, W., Jr., et al., Safety Assessment of PEG-150 Pentaerythrityl Tetrastearate as Used in Cosmetics. Int J Toxicol, 2018. 37(2_suppl): p. 5s-9s.
136. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125(6): p. 1401-12.
137. Gibson, G.R., et al., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev, 2004. 17(2): p. 259-75.
138. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology, 2014. 98(1): p. 411-424.
139. Shi, L., et al., Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016. 14(10): p. 651-662.
140. Matsuda, S., et al., Negative faradaic resistance in extracellular electron transfer by anode-respiring Geobacter sulfurreducens cells. Environ Sci Technol, 2011. 45(23): p. 10163-9.
141. Jurkiewicz, B.A. and G.R. Buettner, Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study. Photochem Photobiol, 1994. 59(1): p. 1-4.
142. Balasubramaniam, A., et al., Skin Bacteria Mediate Glycerol Fermentation to Produce Electricity and Resist UV-B. 2020. 8(7): p. 1092.
143. Kao, M.-S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. 2017. 12(4).
144. Kao, M.S., et al., Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnol J, 2017. 12(4).
145. Finke, N., V. Vandieken, and B.B. Jorgensen, Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol, 2007. 59(1): p. 10-22.
146. Chen, C., et al., Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir. Appl Environ Microbiol, 2017. 83(7).
147. Sorokin, D., E. Detkova, and G. Muyzer, Propionate butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions description of Desulfobotulus alkaliphilus sp.nov.Extremophiles. Extremophiles : life under extreme conditions, 2009. 14: p. 71-7.
148. Kumar, S., et al., Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresour Technol, 2018. 251: p. 143-150.
149. Tyrrell, R.M., Ultraviolet radiation and free radical damage to skin. Biochemical Society Symposia, 1995. 61: p. 47-53.
150. Halliday, G.M., Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res, 2005. 571(1-2): p. 107-20.
151. Zheng, P., et al., Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1, 3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochemistry, 2006. 41(10): p. 2160-2169.
152. Wolin, M.J., Interactions between H2-producing and methane-producing species. Microbial formation and utilization of gases, 1976: p. 141-150.
153. Namvar, A.E., et al., Detection of the intercellular adhesion gene cluster (ica) in clinical Staphylococcus aureus isolates. GMS hygiene and infection control, 2013. 8(1): p. Doc03-Doc03.
154. Kıvanç, S.A., et al., Biofilm forming capacity and antibiotic susceptibility of Staphylococcus spp. with the icaA/icaD/bap genotype isolated from ocular surface of patients with diabetes. Malawi medical journal : the journal of Medical Association of Malawi, 2018. 30(4): p. 243-249.
155. Fiume, M.M., et al., Safety Assessment of alkyl esters as used in cosmetics. International journal of toxicology, 2015. 34(2_suppl): p. 5S-69S.
156. Fonseca, B.L., et al., Neuroprotective effects of a new skin care formulation following ultraviolet exposure. Cell Prolif, 2012. 45(1): p. 48-52.
157. Bacqueville, D., et al., Efficacy of a Dermocosmetic Serum Combining Bakuchiol and Vanilla Tahitensis Extract to Prevent Skin Photoaging in vitro and to Improve Clinical Outcomes for Naturally Aged Skin. Clinical, cosmetic and investigational dermatology, 2020. 13: p. 359-370.
158. Abel, H., I. Immig, and E. Harman, Effect of adding caprylic and capric acid to grass on fermentation characteristics during ensiling and in the artificial rumen system RUSITEC. Animal Feed Science and Technology, 2002. 99(1): p. 65-72.
159. Włodarczyk, P., B. Włodarczyk, and A. Kalinichenko, Direct Electricity Production From Coconut Oil - The Electrooxidation Of Coconut Oil In An Acid Electrolyte. E3S Web of Conferences, 2018. 45: p. 00103.
160. Liu, S.-T., et al., Lipophilization of Lysozyme by Short and Middle Chain Fatty Acids. Journal of agricultural and food chemistry, 2000. 48.
161. Reguera, G., Microbial nanowires and electroactive biofilms. FEMS Microbiology Ecology, 2018. 94(7).
162. Cahoon, L.A. and N.E. Freitag, The electrifying energy of gut microbes. Nature, 2018. 562(7725): p. 43-44.
163. Serwańska-Leja, K., K. Czaczyk, and K. Myszka, Biotechnological synthesis of 1,3-propanediol using Clostridium ssp. AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011. 10: p. 11093-11101.
164. Madsen, C.S. and M.A. TerAvest, NADH dehydrogenases Nuo and Nqr1 contribute to extracellular electron transfer by Shewanella oneidensis MR-1 in bioelectrochemical systems. Scientific Reports, 2019. 9(1): p. 14959.
165. Flynn, J.M., et al., Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio, 2010. 1(5).
166. Choudhury, S., et al., Repair kinetics of trans-4-hydroxynonenal-induced cyclic 1,N2-propanodeoxyguanine DNA adducts by human cell nuclear extracts. Biochemistry, 2004. 43(23): p. 7514-7521.
167. Vinolo, M.A.R., et al., Regulation of inflammation by short chain fatty acids. Nutrients, 2011. 3(10): p. 858-876.
168. Suzuki, T. and M. Inukai, Effects of nitrite and nitrate on DNA damage induced by ultraviolet light. Chem Res Toxicol, 2006. 19(3): p. 457-62.
169. Yang, Y., et al., Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol, 2003. 50(2): p. 319-36.
170. Wilson, L.P. and E.J. Bouwer, Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J Ind Microbiol Biotechnol, 1997. 18(2-3): p. 116-30.
171. Borrero-de Acuña, J.M., et al., Protein complex formation during denitrification by Pseudomonas aeruginosa. Microb Biotechnol, 2017. 10(6): p. 1523-1534.
172. Shi, L., et al., Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol, 2016. 14(10): p. 651-62.
173. Liu, X., et al., Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl Microbiol Biotechnol, 2019. 103(3): p. 1535-1544.
174. Wang, W., et al., Bacterial Extracellular Electron Transfer Occurs in Mammalian Gut. Analytical Chemistry, 2019. 91(19): p. 12138-12141.
175. Kim, M., et al., Metabolic shift of Klebsiella pneumoniae L17 by electrode-based electron transfer using glycerol in a microbial fuel cell. Bioelectrochemistry, 2018. 125.
176. Li, X., et al., Identification of potential electrotrophic microbial community in paddy soils by enrichment of microbial electrolysis cell biocathodes. Journal of Environmental Sciences, 2020. 87: p. 411-420.
177. Wu, Z., et al., Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO(2). Microb Cell Fact, 2019. 18(1): p. 15.
178. Pankratova, G., L. Hederstedt, and L. Gorton, Extracellular electron transfer features of Gram-positive bacteria. Anal Chim Acta, 2019. 1076: p. 32-47.
179. Xayarath, B., F. Alonzo, 3rd, and N.E. Freitag, Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS Pathog, 2015. 11(3): p. e1004707.
180. Nakatani, Y., et al., Unprecedented Properties of Phenothiazines Unraveled by a NDH-2 Bioelectrochemical Assay Platform. Journal of the American Chemical Society, 2020. 142(3): p. 1311-1320.
181. Franza, T., et al., A partial metabolic pathway enables group b streptococcus to overcome quinone deficiency in a host bacterial community. Mol Microbiol, 2016. 102(1): p. 81-91.
182. Hiraishi, A., High-performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria. J Appl Bacteriol, 1988. 64(2): p. 103-5.
183. Choi, O. and B.I. Sang, Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol Biofuels, 2016. 9: p. 11.
184. Edwards, M.J., et al., Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Sci, 2020. 29(4): p. 830-842.
185. Carpenter, J.M., et al., Structure and redox properties of the diheme electron carrier cytochrome c(4) from Pseudomonas aeruginosa. J Inorg Biochem, 2020. 203: p. 110889.
186. Bonfils, C., et al., Cyclophilin A as negative regulator of apoptosis by sequestering cytochrome c. Biochem Biophys Res Commun, 2010. 393(2): p. 325-30.
187. Lee, S., et al., Cyclophilin A Binds to Peroxiredoxins and Activates Its Peroxidase Activity. Journal of Biological Chemistry, 2001. 276: p. 29826-29832.
188. Lovley, D.R., Electromicrobiology. Annu Rev Microbiol, 2012. 66: p. 391-409.
189. Seal, S., S. Polley, and S. Sau, A staphylococcal cyclophilin carries a single domain and unfolds via the formation of an intermediate that preserves cyclosporin A binding activity. PLoS One, 2019. 14(3): p. e0210771.
190. Dhanda, A.S., et al., Cyclophilin A Controls Salmonella Internalization Levels and is Present at E. coli Actin-Rich Pedestals. Anat Rec (Hoboken), 2018. 301(12): p. 2086-2094.
191. Roset, M.S., et al., Intracellularly induced cyclophilins play an important role in stress adaptation and virulence of Brucella abortus. Infect Immun, 2013. 81(2): p. 521-30.
192. Wiemels, R.E., et al., An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease. J Bacteriol, 2017. 199(1).
193. Byrd, A.L., Y. Belkaid, and J.A. Segre, The human skin microbiome. Nat Rev Microbiol, 2018. 16(3): p. 143-155.
194. Yoneya, T. and Y. Nishijima, Determination of free glycerol on human skin surface. 1979. 6(5): p. 191-193.
195. Nakatsuji, T., et al., A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv, 2018. 4(2): p. eaao4502.
196. Wegh, C.A.M., et al., Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci, 2019. 20(19).
197. Güller, P., et al., A study on the effects of inhibition mechanism of curcumin, quercetin, and resveratrol on human glutathione reductase through in vitro and in silico approaches. J Biomol Struct Dyn, 2020: p. 1-10.
198. Oschman, J.L., Can electrons act as antioxidants? A review and commentary. J Altern Complement Med, 2007. 13(9): p. 955-67.
199. Steinbrenner, H., et al., UVA-mediated downregulation of MMP-2 and MMP-9 in human epidermal keratinocytes. Biochem Biophys Res Commun, 2003. 308(3): p. 486-91.
200. Karkucinska-Wieckowska, A., et al., Increased reactive oxygen species (ROS) production and low catalase level in fibroblasts of a girl with MEGDEL association (Leigh syndrome, deafness, 3-methylglutaconic aciduria). Folia Neuropathol, 2011. 49(1): p. 56-63.
201. Rastogi, R.P., et al., Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids, 2010. 2010: p. 592980.
202. Shively, J.M., Prokaryote Inclusions: Descriptions and Discoveries, in Inclusions in Prokaryotes, J.M. Shively, Editor. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 3-20.
203. ter Heijne, A., et al., Electron Storage in Electroactive Biofilms. Trends in Biotechnology, 2020.
204. Light, S.H., et al., Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proc Natl Acad Sci U S A, 2019. 116(52): p. 26892-9.
205. Trenam, C.W., D.R. Blake, and C.J. Morris, Skin Inflammation: Reactive Oxygen Species and the Role of Iron. Journal of Investigative Dermatology, 1992. 99(6): p. 675-682.
206. Pouillot, A., A. Polla, and B.S. Polla, Iron and iron chelators: a review on potential effects on skin aging. Curr Aging Sci, 2013. 6(3): p. 225-31.
207. Ayala, A., M.F. Muñoz, and S. Argüelles, Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev, 2014. 2014: p. 360438.
208. Huang, W., et al., Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide. Exp Clin Endocrinol Diabetes, 2017. 125(2): p. 98-105.
209. Courtois, F., et al., Membrane peroxidation by lipopolysaccharide and iron-ascorbate adversely affects Caco-2 cell function: beneficial role of butyric acid. Am J Clin Nutr, 2003. 77(3): p. 744-50.
210. Scharlau, D., et al., Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res, 2009. 682(1): p. 39-53.
211. Ahmed-Belkacem, A., et al., Fragment-based discovery of a new family of non-peptidic small-molecule cyclophilin inhibitors with potent antiviral activities. Nat Commun, 2016. 7: p. 12777.
212. Ramachandran, S., A. Vinitha, and C.C. Kartha, Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus. Cardiovasc Diabetol, 2016. 15(1): p. 152.
213. Chiranjeevi, P. and S.A. Patil, Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol Adv, 2020. 39: p. 107468.
214. Speers, A.M., J.M. Young, and G. Reguera, Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium. Environ Sci Technol, 2014. 48(11): p. 6350-8.
215. Mahadevan, R., et al., Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Applied and environmental microbiology, 2006. 72(2): p. 1558-1568.
216. Izykowska, I., et al., Effect of melatonin on human keratinocytes and fibroblasts subjected to UVA and UVB radiation In vitro. In Vivo, 2009. 23(5): p. 739-45.
217. Zhong, J.L., et al., Susceptibility of skin cells to UVA-induced necrotic cell death reflects the intracellular level of labile iron. J Invest Dermatol, 2004. 123(4): p. 771-80.
218. Posada-Quintero, H.F. and K.H. Chon, Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors (Basel), 2020. 20(2).
指導教授 黃俊銘(Chun-Ming Huang) 審核日期 2020-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明