博碩士論文 105827605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.204.227.117
姓名 古曼尼(MANISH KUMAR)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 5-甲基糠醛抑制L-乳酸葡萄球菌的發酵 表皮葡萄球菌和雙乙酰產生:一種淺在的新型除臭劑靶向人體汗液中的细菌發酵
(5-methyl furfural inhibits the fermentation of L-lactate Staphylococcus epidermidis and diacetyl production: A potential novel deodorant targeting bacterial fermentation in human sweats)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ BACILLUS AMYLOLIQUEFACIENS生長在高GABA含量稻米刺激膠原蛋白合成以及減緩磷酸三鈣誘導產生的皮膚搔癢
★ 人體汗水之乳酸鈉觸發人類皮膚益生菌之表皮葡萄球菌發酵及皮膚電導之應用★ 甘油對於皮膚細菌和皮膚發電之影響
★ 從人類皮膚微生物總體中鑑定溶解磷酸鈣的細菌★ 皮膚表皮葡萄球菌透過發酵抑制紅色毛癬菌之研究
★ 建立人類皮膚益生微生物菌組銀行★ The study of in vitro and in vivo fermentation of bacteria in the skin microbiome
★ 基於半胱氨酸的水凝膠與銅離子結合以抵抗USA300耐甲氧西林金黃色葡萄球菌作為有效的傷口敷料★ 皮膚微生物基因組群揭示益生菌/益生質/後生元對搔癢症與紫外線輻射誘導產生的發炎反應之作用機制
★ 藉由金黃色葡萄球菌增加抗體的產生來對抗痤瘡丙酸桿菌,用以增進痤瘡之治療★ 共生菌痤瘡丙酸桿菌之葡萄糖發酵在小鼠中磷酸鈣誘導之搔癢以及促發炎介白素-6的產生上的效果。
★ 基於PEG的益生元影響皮膚細菌和皮膚電的發酵★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Statista報告稱,2017年全球除臭劑市場估計價值約為699.1億美元。幾 乎
90%的18-29歲的青少年每天都在使用除臭劑。二乙酰基或2,3-丁二酮是導
致人類出汗惡臭的主要成分之一。Staphylococcus epidermidis (S. epidermidis)是
人類汗液中細菌之一。葡萄球菌細菌可以發酵甘油或乳酸以形成短鏈(C2- C3)揮發性脂肪
酸(VFA),如乙酸和丙酸。另外細菌可以將支鏈脂肪族氨 基酸轉化為高
度有氣味的短鏈(C4-C5)甲基支化的VFA,如異戊酸。這些 細菌代謝丙
酮酸,產生α-乙酰乳酸作為中間體,隨後通過氧化脫羧將α-乙酰乳酸非酶促轉化為二乙酰。 L乳酸是汗液中表皮葡萄球菌發酵的主要碳源, 以產生二乙酰。
我們設計了一種新的裝置,將表皮葡萄球菌培養物與GASTEC TUBES
92L(GT 92L)連接來測量當L-乳酸存在或不存在 ,雙乙酰生成量的變化。使用5-甲
基糠醛(5-MF)在表皮葡萄球菌L-乳酸發酵生產雙乙酰反應中作為 抑製劑。在
進行最大殺菌濃度(MBC)測試,我們發現0.15%的5-MF對表皮 葡萄球菌以及
CCD106KERTr角質形成細胞不具有毒性。在L-乳酸鹽存在下 培養表皮葡萄
球菌與5-MF明顯降低雙乙酰產生。我們的研究結果介紹了一種
檢測人類皮膚共生細菌發酵產生的惡臭的新設備,並提出5-MF作為下一代除 臭劑開發的
化合物具有巨大潛力。 關鍵字:二乙酰、甲基糠醛、揮發性脂肪酸、人類
角質形成細胞、GASTEC
摘要(英) 5-methyl furfural inhibits the fermentation of L-lactate
Staphylococcus epidermidis and diacetyl production: A potential novel deodorant targeting bacterial ermentation in human sweats

Statista reports that the global market of deodorants in 2017 is estimated to be worth about 69.91 billion US dollars. Almost 90% of teenagers aged 18-29 years are using deodorants every day. Diacetyl, or 2, 3-butanedione, is one of major components responsible for malodour in human sweats. Staphylococcus bacteria such
as Staphylococcus epidermidis (S. epidermidis) are one of bacterial strains in the human sweats. Staphylococcus bacteria may ferment the glycerol or lactic acid to form short- chain (C2-C3) volatile fatty acids (VFAs),
acetic and propionic acids. Additionally, the bacteria can convert the branched aliphatic amino acids to the highly odorous short-chain (C4-C5) methylbranched VFAs, like Isovaleric acid. These bacteria metabolize pyruvate, yield αacetolactate as intermediate and subsequently converted α-acetolactate nonenzymatically to diacetyl by oxidative decarboxylation. L-lactate is a major carbon
source of S. epidermidis fermentation in sweats to produce diacetyl. We designed a new device for the measurement of diacetyl by connection of S. epidermidis culture to GASTEC TUBES 92L (GT 92L) in the absence or presence of L-lactate. 5-methyl furfural (5-MF) was used as an inhibitor for the production of diacetyl by S. epidermidis L-lactate fermentation. By conducting the
maximum bacteriocidal concentration (MBC) test, we found that 0.15% of 5-MF is non-toxic to S. epidermidis as well as CCD 106 KERTr keratinocyte cells. Incubation of S. epidermidis with 5-MF in the presence of L- lactate significantly reduced the production of diacetyl. Our results introduce a novel device for detection of
malodour produced by fermentation of human skin commensal bacteria and suggest that 5-MF holds great potential as a compound for development of next-generation
deodorants.
Keywords: Deodorants, Diacetyl, Fermentation, Methyl furfural, S.epidermidis
關鍵字(中) ★ 二乙酰
★ 甲基糠醛
★ 揮發性脂肪酸
關鍵字(英) ★ Deodorants
★ Diacetyl
★ Fermenation
論文目次 Table of Contents
1. INTRODUCTION........................................................................................…...1
1.1 Human sweat………………….…………………………………………1
1.2 Secretion of sweat……………………………………………………….1
1.2. (i) An eccrine sweat gland and secretions………………………………….1
1.2.(ii) Apocrine and apoeccrine sweat glands and secretions………………1
1.2.(iii) Sebaceous glands and sebum……………………………………….4
1.3 Function of sweat ……………………………………………………….4
1.3(i) Temperature and fluid homeostasis………………………………………4
1.3(ii) Sweat electrolyte regulation……………………………………………..4
1.3(iii) Skin protection……………………………………………………………4
1.3(iv) Immune system……………………………………………………………5
1.3(v) Excretion functions and drug delivery mechanisms………………..…5
1.3(vi) Metabolic and infectious disease……………………………..………5
1.3(vii) Therapeutic and wellness functions of sweat……………………...5
1.3(viii) Lipid homeostasis…………………………………………………….5
1.4 Human body odor………………………………………………………7
1.4(i) Genetics behind the body odor………………………………………7
1.4(ii) Deodorants……………………………………………………………8
1.4(iii) Mechanism of actions…………………………………………………9
1.4(iv) Side effects of deodorants……………………………………………..9
1.5 Bacterial Microbiome…………………………………………………..10
1.5(i) Staphylococcus epidermidis…………………………………………..11
1.6 Fermentation and Short-Chain Fatty Acids (SCFAs).....................…...12
1.6(i) Butane-2, 3-dione (diacetyl)………………………………………..….15
1.7 Inhibitors and their mechanism………………………………..…….…17
2. RESEARCH OBJECTIVES.......................................................................…...19
3. MATERIALS AND METHODS………………………………………………21
3.1 Bacterial culture………………………………………………………..21
3.2 Fermentation of bacteria……………………………………………….21
3.3 In vitro assay for diacetyl generation…………………………………..21
3.4 pH analysis after diacetyl generation…………………………………..23
3.5 Assay for suppression of diacetyl generation………………………….23
3.6 pH measurement after inhibition……………………………………….23
3.7 Enzyme assay for 5-MF…………………………………………..……24
3.8 MTT assay………………………………………………………….….24
3.9 Statistics…………………………………………………………..……25
4. RESULTS………………………………………………………………………26
4.1 Sodium lactate used as a carbon source………………………………..26
4.2 pH evaluation…………………………………………………………..27
4.3 Identification of diacetyl with the help of GT-92L…………………….30
4.4 5-MF and its inhibitory nature………………………………….…..….32
4.5 pH evaluation of 5-MF inhibition………………………………...……34
4.6 Enzyme activity of 5-MF................................................................…...35
4.7 Evaluation of reduced level of diacetyl with the GT-92L …………….36
4.8 MTT assay …………………………………………………………….38
DISSUSSION…………………………………………………………………….39
CONCLUSION……………………………………………………….…………..40
REFERENCES……………………………………………………………………41
參考文獻 REFERENCES
1. Wilke, K., et al., A short history of sweat gland biology. 2007. 29(3): p. 169-179.
2. Callewaert,C.,etal.,CharacterizationofStaphylococcusandCorynebacterium Clustersinthe
Human Axillary Region. PLOS ONE, 2013. 8(8): p. e70538.
3. Bawdon, D., et al., Identification of axillary Staphylococcus sp. involved in the production of
the malodorous thioalcohol 3-methyl-3-sufanylhexan-1-ol. FEMS Microbiology Letters, 2015.
362(16): p. fnv111-fnv111.
4. James, A.G., et al., Microbiological and biochemical origins of human axillary odour. FEMS
Microbiology Ecology, 2013. 83(3): p. 527-540.
5. Fredrich, E., et al., Daily battle against body odor: towards the activity of the axillary
microbiota. Trends in Microbiology, 2013. 21(6): p. 305-312.
6. Beck, H.C., A.M. Hansen, and F.R. Lauritsen, Catabolism of leucine to branched-chain fatty
acids in Staphylococcus xylosus. 2004. 96(5): p. 1185-1193.
7. Sato, K., The physiology, pharmacology, and biochemistry of the eccrine sweat gland, in
Reviews of Physiology, Biochemistry and Pharmacology, Volume 79. 1977, Springer Berlin
Heidelberg: Berlin, Heidelberg. p. 51-131.
8. Piérard, G.E., et al., EEMCO Guidance for the Efficacy Assessment of Antiperspirants and
Deodorants. SkinPharmacology andPhysiology, 2003. 16(5): p. 324-342.
9. Beauchamp, M. and L.C. Lands, Sweat-testing: A review of current technical requirements.
2005. 39(6): p. 507-511.
10. Peng,Y.,etal.,SystematicReviewFocusingontheExcretionandProtectionRolesofSweatin
the Skin. Dermatology, 2014. 228(2): p. 115-120.
11. Sato,K., R. Leidal, andF.Sato, Morphology anddevelopment of an apoeccrine sweatgland in
human axillae. 1987. 252(1): p. R166-R180.
12. Barzantny, H., I. Brune, and A. Tauch, Molecular basis of human body odour formation:
insights deducedfromcorynebacterialgenomesequences. 2012.34(1): p.2-11.
13. Noël, F., et al.,Sweaty skin, background and assessments. 2012. 51(6): p. 647-655.
14. Tsatsou, F. and C.C. Zouboulis, Anatomy of the Sebaceous Gland, in Pathogenesis and
Treatment ofAcne andRosacea,C.C.Zouboulis,A.D.Katsambas, andA.M.Kligman,Editors.
2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 27-31.
15. Shi, V.Y., et al., Role of sebaceous glands in inflammatory dermatoses. J Am Acad Dermatol,
2015. 73(5): p.856-63.
16. Zhou,S.-S., etal.,Theskin function:afactor ofanti-metabolic syndrome.2012. 4(1): p.15.
17. Chen, X., et al., In vivo single human sweat gland activity monitoring using coherent antiStokesRamanscatteringandtwo-photonexcitedautofluorescencemicroscopy.2016.174(4):
p. 803-812.
18. Bates, G.P., V.S.J.J.o.O.M. Miller, andToxicology, Sweatrate and sodium loss during work in
the heat. 2008. 3(1): p. 4.
19. Porter,A.M.W.,WhydowehaveApocrineandSebaceousGlands?2001.94(5):p.236-237.
20. Dai, X., et al., Eccrine Sweat Contains IL-1α, IL-1β and IL-31 and ActivatesEpidermal
Keratinocytes as a Danger Signal. PLOS ONE, 2013. 8(7): p. e67666.
21. Quattrini, C., et al.,TheNeuropad test: a visual indicatortest for humandiabetic neuropathy.
2008. 51(6): p. 1046-1050.
22. Pochi, P.E., D.T. Downing, and J.S. Strauss, Sebaceous gland response in man to prolonged
total caloric deprivation. J Invest Dermatol, 1970. 55(5): p. 303-9.
23. Wilkinson, D.I., Psoriasis and dietary fat: the fatty acid composition of surface and scale
(ether-soluble) lipids. J Invest Dermatol, 1966. 47(3): p. 185-92.
42
24. Laden,K.,Antiperspirants and deodorants : historyof major HBAmarket.Antiperspirants
and Deodorants, 1999: p. 1-15.
25. Martin,A., et al.,AFunctionalABCC11Allele IsEssential in theBiochemicalFormation of
HumanAxillaryOdor.JournalofInvestigativeDermatology,2010.130(2):p.529-540.
26. Yoshiura, K.-i., et al., A SNP in the ABCC11 gene is the determinant of human earwax type.
Nature Genetics, 2006. 38: p. 324.
27. Kanlayavattanakul, M. and N. Lourith, Body malodours and their topical treatment agents.
2011. 33(4): p. 298-311.
28. Nakano, M., et al., A strong association of axillary osmidrosis with the wet earwax type
determined by genotyping of the ABCC11 gene. 2009. 10(1): p. 42.
29. Preti,G.andJ.J.Leyden,GeneticInfluencesonHumanBodyOdor:FromGenestotheAxillae.
Journal of Investigative Dermatology, 2010. 130(2): p. 344-346.
30. Walton, J.R.,Aluminum disruption of calcium homeostasis and signal transduction resembles
changethatoccurs inagingandAlzheimer′sdisease. JAlzheimersDis,2012.29(2):p.255-73.
31. Kort, R., De microbemens. 2017: Atheneum-Polak.
32. Ara, K., et al., Foot odor due to microbial metabolism and its control. Canadian Journal of
Microbiology, 2006. 52(4): p. 357-364.
33. Gao, Z., et al., Quantitation of Major Human Cutaneous Bacterial and Fungal Populations.
2010. 48(10): p. 3575-3581.
34. Schleifer, K.H. and W.E. Kloos, Isolation and Characterization of Staphylococci from Human
Skin I. Amended Descriptions of Staphylococcus epidermidis and Staphylococcus
saprophyticus and Descriptions of Three New Species: Staphylococcus cohnii, Staphylococcus
haemolyticus, and Staphylococcus xylosus. 1975. 25(1): p. 50-61.
35. Fey, P.D. and M.E. Olson, Current concepts in biofilm formation of Staphylococcus
epidermidis. 2010. 5(6): p. 917-933.
36. Kobayashi, S., [Relationship between an offensive smell given off from human foot and
Staphylococcus epidermidis]. Nihon saikingaku zasshi. Japanese journal of bacteriology,
1990. 45(4): p.797-800.
37. Marshall, J., K.T. Holland, and E.M. Gribbon, A comparative study of the cutaneous
microflora of normal feet with low and high levels of odour. 1988. 65(1): p. 61-68.
38. Hara,T.,A.Kyuka, and H.Shimizu,Butane-2,3-dione: the Key Contributor toAxillary andFoot
Odor Associated with an Acidic Note. 2015. 12(2): p. 248-258.
39. Leyden, J.J., et al., The microbiology of the human axilla and its relationship to axillary odor. J
Invest Dermatol, 1981. 77(5): p. 413-6.
40. Zeng,X.N., et al.,Analysis of characteristic odors from human male axillae. J Chem Ecol,
1991. 17(7): p.1469-92.
41. Petersen, L.J., Interstitial lactate levels in human skin at rest and during an oral glucose load:
a microdialysis study. 1999. 19(3): p. 246-250.
42. Schmauder, H.-P., A. G. Moat and J. W. Foster, Microbial Physiology (2nd Edition). XIV + 597
S., 296 Abb., 53 Tab. New York-Chichester-Brisbane-Toronto-Singapore 1988. John Wiley &
Sons. £ 42.50. ISBN: 0-471-81251-X. 1989. 29(5): p. 298-298.
43. Massey, L.K., J.R. Sokatch, and R.S. Conrad, Branched-chain amino acid catabolism in
bacteria. Bacteriological reviews, 1976. 40(1): p. 42-54.
44. Thierry,A.,M.-B.Maillard,and M.Yvon, Conversion ofl-Leucine to
Isovaleric Acid by Propionibacterium freudenreichii TL 34 and ITGP23. 2002.
68(2): p. 608-615.
45. Örlygsson, J., et al., Thermophilic anaerobic amino acid degradation: deamination rates and
end-product formation. 1995. 43(2): p. 235-241.
46. Demeyer,D.,etal.,Controlofbioflavourandsafetyinfermentedsausages:firstresultsofa
European project. Food Research International, 2000. 33(3): p. 171-180.
43
47. Noble, W.C., Staphylococci on the skin. In: The skin microflora an dMicorbial skin disease.
Cambridge Univeristy Press, Cambridge, 1993: p. 135-152.
48. Robinson,S.andA.H.Robinson,ChemicalCompositionofSweat.1954.34(2):p.202-220.
49. Labors, J.N., et al., Steroid analysis of human apocrine secretion. Steroids, 1979. 34(3): p.
249-258.
50. Zeng, X.-N., et al., An investigation of human apocrine gland secretion for axillary odor
precursors. 1992. 18(7): p. 1039-1055.
51. Chen, H., et al., Expression of apolipoprotein D and androgen receptor in axillary osmidrosis
and its molecularmechanism.International journalof clinicaland experimentalmedicine,
2013. 6(7): p.497-503.
52. Melnik, B.C., et al., Microanalytical screening of all major stratum corneum lipids by
sequential high-performance thin-layer chromatography. J Invest Dermatol, 1989. 92(2): p.
231-4.
53. JOHN N. LABOWS, K.J., McGINLEY, ALBERT M. KLIGMAN, Perspectives on axillary odor.
Society of Cosmetic Chemists, 1981.
54. Zeng, X.-n., et al., Analysis of characteristic odors from human male axillae. 1991. 17(7): p.
1469-1492.
55. James, A.G., D. Hyliands, and H. Johnston, Generation of volatile fatty acids by axillary
bacteria1. 2004. 26(3): p. 149-156.
56. Natsch,A., etal.,Aspecificbacterial aminoacylase cleavesodorant precursors secreted inthe
human axilla. J Biol Chem, 2003. 278(8): p. 5718-27.
57. Hasegawa, Y., M. Yabuki, and M. Matsukane, Identification of New Odoriferous Compounds
in Human Axillary Sweat. 2004. 1(12): p. 2042-2050.
58. Troccaz, M., et al., 3-Methyl-3-sulfanylhexan-1-ol as a Major Descriptor for the Human AxillaSweat Odour Profile. 2004. 1(7): p. 1022-1035.
59. Gower, D.B. and B.A. Ruparelia, Olfaction in humans with special reference to odorous 16-
androstenes: their occurrence, perception and possible social, psychological and sexual
impact. J Endocrinol, 1993. 137(2): p. 167-87.
60. Austin, C. and J. Ellis, Microbial pathways leading to steroidal malodour in the axilla. The
Journal ofSteroidBiochemistry and MolecularBiology, 2003. 87(1): p. 105-110.
61. Starkenmann, C., et al., 5α-Androst-16-en-3α-ol β-D-Glucuronide, Precursor of 5α-Androst16-en-3α-ol in Human Sweat. 2013. 10(12): p. 2197-2208.
62. Caroprese, A., et al., HS-SPME-GC-MS analysis of body odor to test the efficacy of foot
deodorant formulations. 2009. 15(4): p. 503-510.
63. Ara, K., et al., Foot odor due to microbial metabolism and its control. Can J Microbiol, 2006.
52(4): p. 357-64.
64. NOEL GOETZ, G.K., DANIEL GOOD, GEORGES HUSSLER, PIERRE BORE, Detection and
identification of volatile compounds evolved from human hair and scalp using headspace gas
chromatography. J. Soc. Cosmet. Chem, JUNE 7,1987.
65. Hara, T., H. Matsui, and H. Shimizu, Suppression of microbial metabolic pathways inhibits the
generation of the human body odor component diacetyl by Staphylococcus spp. PLoS One,
2014. 9(11): p.e111833.
66. National Academies of Sciences, E., et al., in Public Health Consequences of E-Cigarettes, D.L.
Eaton,L.Y.Kwan,andK.Stratton,Editors.2018,NationalAcademiesPress(US)
Copyright 2018 by the National Academy of Sciences. All rights reserved.: Washington (DC).
67. Banerjee, N., R. Bhatnagar, and L. Viswanathan, Inhibition of glycolysis by furfural in
Saccharomyces cerevisiae. Vol. 11. 1981. 226-228.
68. Taherzadeh, M.J., et al., Physiological effects of 5-hydroxymethylfurfural on Saccharomyces
cerevisiae. Appl Microbiol Biotechnol, 2000. 53(6): p. 701-8.
69. Sjostrom, E., Wood Chemistry: Fundmentals and applications, . Academic Press, San Diego,
1993.
44
70. MODIG, T., G. LIDÉN, and M.J. TAHERZADEH, Inhibition effects of furfural on alcohol
dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. 2002. 363(3): p.
769-776.
71. Steinman, C.R. and W.B. Jakoby, Yeast aldehyde dehydrogenase. II. Properties of the
homogeneous enzyme preparations. JBiol Chem, 1968. 243(4): p. 730-4.
72. Modig, T., Kinetics and inhibition effects of furfural and hydroxymethyl furfural on enzymes in
yeast. 2018.
指導教授 黃俊銘(ERIC CHUN-MIING HUANG) 審核日期 2019-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明