博碩士論文 105827606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:54.227.97.219
姓名 薩明(Mohamed Amin Salah Abbas Sayed Ahmed)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
(Comparative study in formation,stability and fouling resistance of sulfobetaine-based self-assembled monolayers)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發
★ 駕駛模擬器技術開發及其在駕駛行為研究之應用★ 電源模組老化因子與加速試驗模型之研究
★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響★ 遠距健康監測與復健系統之開發與研究
★ 藥柱低週疲勞特性與壽限評估模式之研究★ 非接觸式電子經緯儀電腦模擬教學系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 非特異性蛋白質吸附是生物醫學應用中最重要的問題,例如植入式
醫療器械。此外,自組裝單層的降解受到廣泛關注,因為它被認為
是決定這些系統適用性的關鍵因素。研究中,發現很多對不同血液
成分具有高抗污性的穩定塗層材料,並且提出不同策略作為增強自
組裝單層的穩定性的解決方案。在這項工作中,我們合成了三種磺
基甜菜鹼基單體; (單硫醇)3 - [(11-巰基-十一烷基)-N,N-二
甲基 - 氨基] - 丙烷-1-磺酸“SB-硫醇”,(二硫化物)硫辛酸 -
磺基乙烷“SBSS”和(二硫醇)二氫脂質酸 - 磺基甜菜鹼“SB-二
硫醇”,並比較了它們的自組裝單層的構成,穩定性和抗吸附性。
將SBSS 還原成SB-二硫醇導致更高的覆蓋率,對不同蛋白質的抗吸
附性,更高的阻斷電子轉移能力和對解吸電壓掃描的有效穩定性,
如表面等離子體共振(SPR)形成測試所示,並進行蛋白質抗吸附性
試驗和電化學分析。儘管SB-二硫醇在潤濕性方面表現出與SB-硫醇
相似的能力,並且對不同蛋白質具有抗吸附性,但前者在”接觸角
分析”,”厚度分析”,”表面等離子體共振分析”和”電化學分
析”中所有的穩定性測試顯示出更好的特性。這項研究將使我們對
類似兩性離子自組裝單層與金和鄰近部分的相互作用有所了解,並
有望為未來的許多應用奠定基礎。
摘要(英) Non-specific protein adsorption is the most important problem in
biomedical applications, such as implantable medical devices.1 In addition,
the degradation of self-assembled monolayers has received a broad
attention as it is regarded a key factor that determines the applicability of
these systems into many applications. Many studies have been introduced
to give stable coating materials with high fouling resistance against
different blood components and different strategies have been proposed as
a solution to enhance the stability of the self-assembled monolayers.2 In
this work, we synthezied three sulfobetaine-based monomers; (monothiol)
3-[(11-mercapto-undecyl)-N,N-dimethyl-amino]-propane-1-sulfonic acid
“SB-thiol“, (disulfide) lipoic acid-sulfobetiane “SBSS“ and (dithiol)
dihydrolipoic acid-sulfobetaine “SB-dithiol“, and compared the formation,
stability and fouling resistance of their self-assembled monolayers. The
reduction of SBSS into SB-dithiol3 resulted in a higher coverage, a better
fouling resistance against different proteins, a higher capability to block
electron transfer and an effective stability against desorption voltage sweep
as was shown by the Surface Plasmon Resonance (SPR) formation test,
protein fouling resistance test and the electrochemical analysis
respectively. Although SB-dithiol exhibited a similar behavior to SB-thiol
in the wetting properties and the fouling resistance against different
proteins, the former showed a privilege in all the stability tests “contact
angle analysis”, “thickness analysis”, “Surface Plasmon Resonance
analysis” and electrochemical analysis. This study will develop our
understanding of the interactions of analogues zwitterionic SAMs with
gold and adjacent moities, and it is expected to put the basis for many future
applications.
關鍵字(中) ★ 磺酸甜菜鹼
★ 抗吸附性
★ 兩性離子自組裝單層
關鍵字(英) ★ Sulfobetaine
★ fouling resistance
★ zwitterionic self-assembled monolayers
論文目次 Abstract…………………...……………………………....….………... (II)
Table of contents……….……………………………….…..……....... (IV)
List of figures……………………………………………………….. (VIII)
List of Tables…………………………………………………………. (XI)
Chapter 1. Literature review………………......……………..…...….… (1)
1.1 Introduction …………………………….……………..…….…….. (1)
1.2 SAMs and Organic Surfaces …………….……………….….…….. (3)
1.2.1 SAMs of mercaptans on gold surfaces…………..……..… (4)
1.3 Preparation of SAMs ……………….………………...…….……… (6)
1.3.1 Why Is Gold the Standard ………...……..….…….……… (7)
1.3.2 The cleanliness of the Substrate ……….........……...……... (8)
1.3.3 Concentration of SAMs …....……….……….………...….. (9)
1.3.4 Temperature ………...……..….……………..…………..... (9)
1.4 Applications of SAMs on Thin Metal Films……..……...….…….. (10)
1.4.1 SAMs as Barriers to Electron Transport ……..…....… ….(11)
1.4.1.1 SAMs for Electrochemistry ………..……... ….(11)
1.4.2 SAMs for Biochemistry and Biology….…………....… … (12)
1.4.2.1 Designing SAMs to be Model Biological
Surfaces………..…………………….......... ….(13)
1.5 Protein-resistant surfaces…………………………...…….…........ (14)
V
1.5.1 Ethylene glycol………………………...……….........… (15)
1.5.2 Zwitterionic coating….……...………...……..............… (16)
1.6 Removing SAMs from surfaces……………………….…...…...... (18)
1.6.1 Electrochemical Desorption of SAMs………..………… (19)
1.6.2 Photooxidation of SAMs...……..……….…………….... (20)
Chapter 2. Research objectives …………………………………....…. (21)
Chapter 3. Materials and Methods ……………………….....…..….… (23)
3.1 Materials ………………………………………………..……..…. (23)
3.2 Methods ………………………………………………..……..….. (23)
3.2.1 Synthesis of SB-thiol ……………...…………...………... (23)
3.2.2 Synthesis of SBSS and SB-dithiol....…………....………. (25)
3.2.3 Thin film preparation……………....…………..………… (26)
3.2.4 Water contact angle measurement.....…………...………. (26)
3.2.5 SPR measurement………………......…………...………. (27)
3.2.6 Electrochemical Analysis………......…………..………... (28)
3.2.7 Ellipsometry measurement………...…………..……….... (28)
3.2.8 UV-aging Test………….…………..…………...…….…. (29)
3.2.9 SEIRA Spectroscopy………………...…………...…….... (29)
Chapter 4. Results……………... ………………...……………......… (30)
4.1 Characterization of SB-thiol, SBSS and SB-dithiol………........... (30)
4.1.1 Mass spectra measurements ….…...…………...………... (30)
4.1.2 Analysis of 1H NMR spectra……...…………...………...... (31)
VI
4.1.3 XPS Surface Elemental Analysis …...…………...…….........(34)
4.1.4 Wettabilities of the Films …………...…………...….…….. (36)
4.1.5 Thicknesses of the Films …………...…………...……….... (37)
4.1.6 Surface Enhanced Infra-Red Analysis (SEIRA) .…..……... (37)
4.1.7 Protein Fouling Resistance ……………...….....………....... (39)
4.2 The SPR Formation Test…………..……………………......……. (40)
4.3 The Stability Tests ………………………………………..……. ..(41)
4.3.1 UV-Oxidation “Contact angle Analysis”………...…..…….. (41)
4.3.2 UV-Oxidation “Thickness Analysis”….………...……….... (42)
4.3.3 UV-Oxidation “SPR Analysis”…………………...………... (43)
4.3.4 Electrochemical Analysis….………...…………...……….... (44)
Chapter 5. Discussion …………….………………………………….. (46)
5.1 Characterization of SB-thiol, SBSS and SB-dithiol………....... ….(46)
5.1.1 XPS Surface Elemental Analysis …...…………...……….... (46)
5.1.2 Wettabilities of the Films …………...…………...……….... (46)
5.1.3 Thicknesses of the Films …………...…………...………...... (47)
5.1.4 Surface Enhanced Infra-Red Analysis (SEIRA) .….…..….. .(47)
5.1.5 Protein Fouling Resistance ……………...….....………….... (48)
5.2 The SPR Formation Test…………..……………………......……. (48)
5.3 The Stability Tests ………………………………………..……… (49)
5.3.1 UV-Oxidation tests…………………..………...……….... ….(49)
5.3.2 Electrochemical Analysis….………...…………...……….... .(50)
Chapter 6. Conclusions ……………………………………………… (52)
Chapter 7. Future Work ……………………………………………… (53)
Bibliography ………………………...………………………………. (54)
參考文獻 1. Hlady, V. V.; Buijs, J., Protein adsorption on solid surfaces. Current
opinion in biotechnology 1996, 7 (1), 72-77.
2. Srisombat, L.; Jamison, A. C.; Lee, T. R., Stability: A key issue for
self-assembled monolayers on gold as thin-film coatings and nanoparticle
protectants. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 2011, 390 (1), 1-19.
3. Sun, M.; Hoffman, D.; Sundaresan, G.; Yang, L.; Lamichhane, N.;
Zweit, J., Synthesis and characterization of intrinsically radiolabeled
quantum dots for bimodal detection. American journal of nuclear medicine
and molecular imaging 2012, 2 (2), 122-135.
4. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C.,
Self-assembled monolayers of thiols and dithiols on gold: new challenges
for a well-known system. Chemical Society Reviews 2010, 39 (5), 1805-
1834.
5. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides,
G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of
Nanotechnology. Chemical Reviews 2005, 105 (4), 1103-1170.
6. Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.;
Whitesides, G. M., New Approaches to Nanofabrication: Molding,
Printing, and Other Techniques. Chemical Reviews 2005, 105 (4), 1171-
1196.
7. Nuzzo, R. G.; Dubois, L. H.; Allara, D. L., Fundamental studies of
microscopic wetting on organic surfaces. 1. Formation and structural
characterization of a self-consistent series of polyfunctional organic
55
monolayers. Journal of the American Chemical Society 1990, 112 (2), 558-
569.
8. Whitesides, G. M.; Laibinis, P. E., Wet chemical approaches to the
characterization of organic surfaces: self-assembled monolayers, wetting,
and the physical-organic chemistry of the solid-liquid interface. Langmuir
1990, 6 (1), 87-96.
9. L H Dubois, a.; Nuzzo, R. G., Synthesis, Structure, and Properties
of Model Organic Surfaces. Annual Review of Physical Chemistry 1992,
43 (1), 437-463.
10. Gooding, J. J.; Ciampi, S., The molecular level modification of
surfaces: from self-assembled monolayers to complex molecular
assemblies. Chemical Society Reviews 2011, 40 (5), 2704-2718.
11. Casalini, S.; Bortolotti, C. A.; Leonardi, F.; Biscarini, F., Selfassembled
monolayers in organic electronics. Chemical Society Reviews
2017, 46 (1), 40-71.
12. Noor, M. O.; Krull, U. J., Silicon nanowires as field-effect
transducers for biosensor development: A review. Analytica Chimica Acta
2014, 825, 1-25.
13. Sen Gupta, A.; Wang, S.; Link, E.; Anderson, E. H.; Hofmann, C.;
Lewandowski, J.; Kottke-Marchant, K.; Marchant, R. E., Glycocalyxmimetic
dextran-modified poly(vinyl amine) surfactant coating reduces
platelet adhesion on medical-grade polycarbonate surface. Biomaterials
2006, 27 (16), 3084-3095.
14. Vaisocherová-Lísalová, H.; Víšová, I.; Ermini, M. L.; Špringer, T.;
Song, X. C.; Mrázek, J.; Lamačová, J.; Scott Lynn, N.; Šedivák, P.;
Homola, J., Low-fouling surface plasmon resonance biosensor for multistep
detection of foodborne bacterial pathogens in complex food samples.
Biosensors and Bioelectronics 2016, 80, 84-90.
56
15. Vaisocherová, H.; Brynda, E.; Homola, J., Functionalizable lowfouling
coatings for label-free biosensing in complex biological media:
advances and applications. Analytical and Bioanalytical Chemistry 2015,
407 (14), 3927-3953.
16. Jiang, L.; Yuan, L.; Cao, L.; Nijhuis, C. A., Controlling Leakage
Currents: The Role of the Binding Group and Purity of the Precursors for
Self-Assembled Monolayers in the Performance of Molecular Diodes.
Journal of the American Chemical Society 2014, 136 (5), 1982-1991.
17. Schreiber, F., Structure and growth of self-assembling monolayers.
Progress in Surface Science 2000, 65 (5), 151-257.
18. Yu, M.; Ascolani, H.; Zampieri, G.; Woodruff, D. P.; Satterley, C.
J.; Jones, R. G.; Dhanak, V. R., The Structure of Atomic Sulfur Phases on
Au(111). The Journal of Physical Chemistry C 2007, 111 (29), 10904-
10914.
19. Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H., Fundamental studies
of the chemisorption of organosulfur compounds on gold(111).
Implications for molecular self-assembly on gold surfaces. Journal of the
American Chemical Society 1987, 109 (3), 733-740.
20. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic
disulfides on gold surfaces. Journal of the American Chemical Society
1983, 105 (13), 4481-4483.
21. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D.,
Spontaneously organized molecular assemblies. 4. Structural
characterization of n-alkyl thiol monolayers on gold by optical
ellipsometry, infrared spectroscopy, and electrochemistry. Journal of the
American Chemical Society 1987, 109 (12), 3559-3568.
22. Fenter, P.; Eisenberger, P.; Li, J.; Camillone, N.; Bernasek, S.;
Scoles, G.; Ramanarayanan, T. A.; Liang, K. S., Structure of octadecyl
57
thiol self-assembled on the silver(111) surface: an incommensurate
monolayer. Langmuir 1991, 7 (10), 2013-2016.
23. Troughton, E. B.; Bain, C. D.; Whitesides, G. M.; Nuzzo, R. G.;
Allara, D. L.; Porter, M. D., Monolayer films prepared by the spontaneous
self-assembly of symmetrical and unsymmetrical dialkyl sulfides from
solution onto gold substrates: structure, properties, and reactivity of
constituent functional groups. Langmuir 1988, 4 (2), 365-385.
24. Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G.
M.; Nuzzo, R. G., Formation of monolayer films by the spontaneous
assembly of organic thiols from solution onto gold. Journal of the
American Chemical Society 1989, 111 (1), 321-335.
25. Bensebaa, F.; Voicu, R.; Huron, L.; Ellis, T. H.; Kruus, E., Kinetics
of Formation of Long-Chain n-Alkanethiolate Monolayers on
Polycrystalline Gold. Langmuir 1997, 13 (20), 5335-5340.
26. Kawasaki, M.; Sato, T.; Tanaka, T.; Takao, K., Rapid Self-
Assembly of Alkanethiol Monolayers on Sputter-Grown Au(111).
Langmuir 2000, 16 (4), 1719-1728.
27. Yamada, R.; Wano, H.; Uosaki, K., Effect of Temperature on
Structure of the Self-Assembled Monolayer of Decanethiol on Au(111)
Surface. Langmuir 2000, 16 (13), 5523-5525.
28. Schoenfisch, M. H.; Pemberton, J. E., Effects of Electrolyte and
Potential on the in Situ Structure of Alkanethiol Self-Assembled
Monolayers on Silver. Langmuir 1999, 15 (2), 509-517.
29. Houston, J. E.; Kim, H. I., Adhesion, Friction, and Mechanical
Properties of Functionalized Alkanethiol Self-Assembled Monolayers.
Accounts of Chemical Research 2002, 35 (7), 547-553.
30. Adams, D. M.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Creutz, C.;
Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A.;
Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. D.;
58
Rolison, D. R.; Sankey, O.; Schanze, K. S.; Yardley, J.; Zhu, X., Charge
Transfer on the Nanoscale: Current Status. The Journal of Physical
Chemistry B 2003, 107 (28), 6668-6697.
31. Aizenberg, J., Patterned crystallisation on self-assembled
monolayers with integrated regions of disorder. Journal of the Chemical
Society, Dalton Transactions 2000, (21), 3963-3968.
32. Ostuni, E.; Yan, L.; Whitesides, G. M., The interaction of proteins
and cells with self-assembled monolayers of alkanethiolates on gold and
silver. Colloids and Surfaces B: Biointerfaces 1999, 15 (1), 3-30.
33. Cowan, J. A., Metal Ions in Biological Systems. Volume 32.
Interactions of metal ions with nucleotides, nucleic acids, and their
constituents A. Sigel and H. Sigel, Eds. Marcel Dekker Inc., New York.
1996. xxxix + 814 pp. 16 × 23.5 cm. ISBN 0-8247-99549-0. $225.00.
Metal Ions in Biological Systems. Volume 33. Probing of nucleic acids by
metal ion complexes of small molecules. A. Sigel and H. Sigel, Eds. Marcel
Dekker Inc., New York. 1996. xli + 678 pp. 16 × 23.5 cm. ISBN 0-8247-
9688-8. $195.00. Journal of Medicinal Chemistry 1996, 39 (21), 4346-
4346.
34. Archer, M. D. A. H., Robert, Clean Electricity from Photovoltaics.
35. Bard, A. J.; Abruna, H. D.; Chidsey, C. E.; Faulkner, L. R.; Feldberg,
S. W.; Itaya, K.; Majda, M.; Melroy, O.; Murray, R. W., The
electrode/electrolyte interface - a status report. The Journal of Physical
Chemistry 1993, 97 (28), 7147-7173.
36. Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M.,
Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on
gold: electroactive self-assembled monolayers. Journal of the American
Chemical Society 1990, 112 (11), 4301-4306.
37. Finklea, H. O.; Snider, D. A.; Fedyk, J.; Sabatani, E.; Gafni, Y.;
Rubinstein, I., Characterization of octadecanethiol-coated gold electrodes
59
as microarray electrodes by cyclic voltammetry and ac impedance
spectroscopy. Langmuir 1993, 9 (12), 3660-3667.
38. Mammen, M.; Choi, S.-K.; Whitesides, G. M., Polyvalent
Interactions in Biological Systems: Implications for Design and Use of
Multivalent Ligands and Inhibitors. Angewandte Chemie International
Edition 1998, 37 (20), 2754-2794.
39. Spisak, S.; Tulassay, Z.; Molnar, B.; Guttman, A., Protein
microchips in biomedicine and biomarker discovery.
ELECTROPHORESIS 2007, 28 (23), 4261-4273.
40. Ngo, B. K. D.; Grunlan, M. A., Protein Resistant Polymeric
Biomaterials. ACS Macro Letters 2017, 6 (9), 992-1000.
41. Halperin, A.; Kröger, M., Collapse of Thermoresponsive Brushes
and the Tuning of Protein Adsorption. Macromolecules 2011, 44 (17),
6986-7005.
42. Chen, S.; Li, L.; Zhao, C.; Zheng, J., Surface hydration: Principles
and applications toward low-fouling/nonfouling biomaterials. Polymer
2010, 51 (23), 5283-5293.
43. Jo, S.; Park, K., Surface modification using silanated poly(ethylene
glycol)s. Biomaterials 2000, 21 (6), 605-616.
44. Harris, J. M., Introduction to Biotechnical and Biomedical
Applications of Poly(Ethylene Glycol). In Poly(Ethylene Glycol)
Chemistry: Biotechnical and Biomedical Applications, Harris, J. M., Ed.
Springer US: Boston, MA, 1992; pp 1-14.
45. Tarannum, N.; Singh, M., Advances in Synthesis and Applications
of Sulfo and Carbo Analogues of Polybetaines: A Review. Reviews in
Advanced Sciences and Engineering 2013, 2 (2), 90-111.
46. Laschewsky, A., Structures and Synthesis of Zwitterionic Polymers.
Polymers 2014, 6 (5), 1544.
61
47. Lewis, A. L., Phosphorylcholine-based polymers and their use in the
prevention of biofouling. Colloids and Surfaces B: Biointerfaces 2000, 18
(3), 261-275.
48. Holmlin, R. E.; Chen, X.; Chapman, R. G.; Takayama, S.;
Whitesides, G. M., Zwitterionic SAMs that Resist Nonspecific Adsorption
of Protein from Aqueous Buffer. Langmuir 2001, 17 (9), 2841-2850.
49. Kane, R. S.; Deschatelets, P.; Whitesides, G. M., Kosmotropes Form
the Basis of Protein-Resistant Surfaces. Langmuir 2003, 19 (6), 2388-
2391.
50. Schneider, T. W.; Buttry, D. A., Electrochemical quartz crystal
microbalance studies of adsorption and desorption of self-assembled
monolayers of alkyl thiols on gold. Journal of the American Chemical
Society 1993, 115 (26), 12391-12397.
51. Shepherd, J. L.; Kell, A.; Chung, E.; Sinclar, C. W.; Workentin, M.
S.; Bizzotto, D., Selective Reductive Desorption of a SAM-Coated Gold
Electrode Revealed Using Fluorescence Microscopy. Journal of the
American Chemical Society 2004, 126 (26), 8329-8335.
52. Quinn, B. M.; Kontturi, K., Reductive Desorption of Thiolate from
Monolayer Protected Gold Clusters. Journal of the American Chemical
Society 2004, 126 (23), 7168-7169.
53. Gorman, C. B.; Biebuyck, H. A.; Whitesides, G. M., Control of the
Shape of Liquid Lenses on a Modified Gold Surface Using an Applied
Electrical Potential across a Self-Assembled Monolayer. Langmuir 1995,
11 (6), 2242-2246.
54. Mulder, W. H.; Calvente, J. J.; Andreu, R., A Kinetic Model for the
Reductive Desorption of Self-Assembled Thiol Monolayers. Langmuir
2001, 17 (11), 3273-3280.
55. Kawaguchi, T.; Yasuda, H.; Shimazu, K.; Porter, M. D.,
Electrochemical Quartz Crystal Microbalance Investigation of the
61
Reductive Desorption of Self-Assembled Monolayers of Alkanethiols and
Mercaptoalkanoic Acids on Au. Langmuir 2000, 16 (25), 9830-9840.
56. Imabayashi, S.-i.; Hobara, D.; Kakiuchi, T.; Knoll, W., Selective
Replacement of Adsorbed Alkanethiols in Phase-Separated Binary Self-
Assembled Monolayers by Electrochemical Partial Desorption. Langmuir
1997, 13 (17), 4502-4504.
57. Huang, J.; Hemminger, J. C., Photooxidation of thiols in selfassembled
monolayers on gold. Journal of the American Chemical Society
1993, 115 (8), 3342-3343.
58. Norrod, K. L.; Rowlen, K. L., Ozone-Induced Oxidation of Self-
Assembled Decanethiol: Contributing Mechanism for “Photooxidation”?
Journal of the American Chemical Society 1998, 120 (11), 2656-2657.
59. Zhang, Y.; Terrill, R. H.; Bohn, P. W., Ultraviolet Photochemistry
and ex Situ Ozonolysis of Alkanethiol Self-Assembled Monolayers on
Gold. Chemistry of Materials 1999, 11 (8), 2191-2198.
60. Cooper, E.; Leggett, G. J., Static Secondary Ion Mass Spectrometry
Studies of Self-Assembled Monolayers: Influence of Adsorbate Chain
Length and Terminal Functional Group on Rates of Photooxidation of
Alkanethiols on Gold. Langmuir 1998, 14 (17), 4795-4801.
61. Heister, K.; Frey, S.; Ulman, A.; Grunze, M.; Zharnikov, M.,
Irradiation Sensitivity of Self-Assembled Monolayers with an Introduced
“Weak Link”. Langmuir 2004, 20 (4), 1222-1227.
62. Shay, K. P.; Moreau, R. F.; Smith, E. J.; Smith, A. R.; Hagen, T. M.,
Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and
therapeutic potential. Biochimica et Biophysica Acta (BBA) - General
Subjects 2009, 1790 (10), 1149-1160.
63. Castner, D. G.; Hinds, K.; Grainger, D. W., X-ray Photoelectron
Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding
Interactions with Gold Surfaces. Langmuir 1996, 12 (21), 5083-5086.
62
64. Ulman, A.; Ioffe, M.; Patolsky, F.; Haas, E.; Reuvenov, D., Highly
active engineered-enzyme oriented monolayers: formation,
characterization and sensing applications. Journal of nanobiotechnology
2011, 9, 26-26.
65. Yang, W. J.; Neoh, K.-G.; Kang, E.-T.; Lay-Ming Teo, S.; Rittschof,
D., Stainless steel surfaces with thiol-terminated hyperbranched polymers
for functionalization via thiol-based chemistry. Polymer Chemistry 2013,
4 (10), 3105-3115.
66. Desimoni, E.; Brunetti, B., X-Ray Photoelectron Spectroscopic
Characterization of Chemically Modified Electrodes Used as Chemical
Sensors and Biosensors: A Review. Chemosensors 2015, 3 (2), 70.
67. Jansen, R. J. J.; van Bekkum, H., XPS of nitrogen-containing
functional groups on activated carbon. Carbon 1995, 33 (8), 1021-1027.
68. Wang, Y.-S.; Yau, S.; Chau, L.-K.; Mohamed, A.; Huang, C.-J.,
Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled
Monolayers for Biosensing Applications. Langmuir 2018.
69. Phan, H. T. M.; Bartz, J. C.; Ayers, J.; Giasson, B. I.; Schubert, M.;
Rodenhausen, K. B.; Kananizadeh, N.; Li, Y.; Bartelt-Hunt, S. L.,
Adsorption and decontamination of α-synuclein from medically and
environmentally-relevant surfaces. Colloids and Surfaces B: Biointerfaces
2018, 166, 98-107.
70. Lalani, R.; Liu, L., Synthesis, characterization, and electrospinning
of zwitterionic poly(sulfobetaine methacrylate). Polymer 2011, 52 (23),
5344-5354.
71. Lenk, T. J.; Hallmark, V. M.; Hoffmann, C. L.; Rabolt, J. F.;
Castner, D. G.; Erdelen, C.; Ringsdorf, H., Structural Investigation of
Molecular Organization in Self-Assembled Monolayers of a
Semifluorinated Amidethiol. Langmuir 1994, 10 (12), 4610-4617.
63
72. Mrksich, M.; Sigal, G. B.; Whitesides, G. M., Surface Plasmon
Resonance Permits in Situ Measurement of Protein Adsorption on Self-
Assembled Monolayers of Alkanethiolates on Gold. Langmuir 1995, 11
(11), 4383-4385.
73. Löfås, S.; Malmqvist, M.; Rönnberg, I.; Stenberg, E.; Liedberg, B.;
Lundström, I., Bioanalysis with surface plasmon resonance. Sensors and
Actuators B: Chemical 1991, 5 (1), 79-84.
74. Chinwangso, P.; Lee, H. J.; Jamison, A. C.; Marquez, M. D.; Park,
C. S.; Lee, T. R., Structure, Wettability, and Thermal Stability of Organic
Thin-Films on Gold Generated from the Molecular Self-Assembly of
Unsymmetrical Oligo(ethylene glycol) Spiroalkanedithiols. Langmuir
2017, 33 (8), 1751-1762.
75. Tam-Chang, S.-W.; Biebuyck, H. A.; Whitesides, G. M.; Jeon, N.;
Nuzzo, R. G., Self-Assembled Monolayers on Gold Generated from
Alkanethiols with the Structure RNHCOCH2SH. Langmuir 1995, 11 (11),
4371-4382.
76. Clegg, R. S.; Reed, S. M.; Hutchison, J. E., Self-Assembled
Monolayers Stabilized by Three-Dimensional Networks of Hydrogen
Bonds. Journal of the American Chemical Society 1998, 120 (10), 2486-
2487.
77. Taha, M.; Quental, M. V.; Correia, I.; Freire, M. G.; Coutinho, J. A.
P., Extraction and stability of bovine serum albumin (BSA) using
cholinium-based Good′s buffers ionic liquids. Process Biochemistry 2015,
50 (7), 1158-1166.
78. Venkataramani, S.; Truntzer, J.; Coleman, D., Thermal stability of
high concentration lysozyme across varying pH: A Fourier Transform
Infrared study. Journal of Pharmacy And Bioallied Sciences 2013, 5 (2),
148-153.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2019-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明