博碩士論文 105827609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.118.148.178
姓名 Binderiya Myagmardoloonjin(Binderiya Myagmardoloonjin)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 人體汗水之乳酸鈉觸發人類皮膚益生菌之表皮葡萄球菌發酵及皮膚電導之應用
(Sodium lactate, a component in human sweats, triggers fermentation and electricity production of skin probiotic Staphylococcus epidermidis)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression
★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria★ BACILLUS AMYLOLIQUEFACIENS生長在高GABA含量稻米刺激膠原蛋白合成以及減緩磷酸三鈣誘導產生的皮膚搔癢
★ 5-甲基糠醛抑制L-乳酸葡萄球菌的發酵 表皮葡萄球菌和雙乙酰產生:一種淺在的新型除臭劑靶向人體汗液中的细菌發酵★ 甘油對於皮膚細菌和皮膚發電之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 發酵在微生物界中是一個代謝的過程,透過酵素使碳源轉換成短鏈脂肪酸等代謝產物,而人體上的微生物會透過人類汗水產生各式樣得短鏈脂肪酸。皮膚電導是一測量皮膚電阻的係數,在本實驗室之前的研究顯示,利用皮膚益生菌中表皮葡萄球菌透過代謝甘油可以產生電子,因此我們假設細菌會利用發酵來影響皮膚電導。在本研究中,乳酸鈉做為益生源來引導表皮葡萄球菌發酵並產生電壓。在體外實驗中,糠醛之衍生物:5-甲糠醛顯著地抑制微生物發酵途徑之α乙醯乳酸合成酶的活性,本結果說明了5-甲糠醛阻斷表皮葡萄球菌透過乳酸鈉進行發酵,進而阻止小鼠皮膚之電壓產生。藉由手心、手背、手臂及脖子來測量皮膚電導,在汗水充足的條件下,皮膚產生電導的特性比一般未留汗水的的條件下來得多。在含有與人體相同濃度下的醋酸,可以上調小鼠在皮膚上的皮膚電導。我們的結果演示了皮膚細菌可以透過汗水來發酵並產生皮膚電導。
摘要(英) Fermentation in microorganisms is a metabolic process that enzymes convert carbon sources to metabolites such as short chain fatty acids (SCFAs). Bacteria in human sweats may mediate fermentation to generate various SCFAs. Skin conductance is the measurement of the electrical conductivity of the skin. Previous results in our laboratory demonstrated that Staphylococcus epidermidis (S. epidermidis), a skin probiotic bacterium, can metabolize glycerol to SCFAs and produce electricity. We thus hypothesize that bacterial fermentation affects the skin conductance. In this study, sodium lactate, a component in sweats, was used as a carbon source to induce fermentation of S. epidermidis and generated a voltage. In vitro experiment, the methyl furfural, an analog of furfural, significantly inhibited the activity of alpha acetolactate synthase (ALS), an enzyme in the pathway of bacterial fermentation. Our results have illustrated that methyl furfural blocked the sodium lactate fermentation of S. epidermidis as well as voltage induction in ICR mice. A voltage measured by skin conductance four different locations which are dorsal hand, palm, arm, and neck. Skin conductance in sweaty skin is significantly higher than that in normal skin. Acetic acid at the dose of 0.01%, which is approximately equivalent to the concentration of acetic acid in human sweats, up-regulated the voltage in the skin conductance in ICR mice. Our results suggest that skin bacteria can mediate sweat components to undergo fermentation and electricity production.
關鍵字(中) ★ 電子
★ 發酵
★ 5-甲糠醛
★ 乳酸鈉
★ 表皮葡萄球菌
關鍵字(英) ★ Electricity
★ Fermentation
★ 5-Methyl furfural
★ Sodium lactate
★ Staphylococcus epidermidis
論文目次 1: Introduction………….……………………………………………………………1
1.1 Sweating………………………………………………………………………...1
1.2 Sweat gland……………………………………………………………………..2
1.3 Sweating mechanism……………………………………………………………3
1.4 Fermentation of bacteria………………………………………………………...4
1.5 Bacterium………………………………………………………………………..5
1.7 Lactate…………………………………………………………………………..6
1.8 Acidic acid……………………………………………………………………....7
1.9 Inhibitor…………………………………………………………………………7
1.10 Skin patch……………………………………………………………………...8
1.11 Skin detector …………………………………………………………………..9
2: Material and Methods…………………….……………………………………...10
2.1 Materials……………………………………………………………………….10
2.1.1 Instruments…………………………………………………………..10
2.1.2 Reagent ……………………………………………………………...10
2.2 Methods………………………………………………………………………………..11
2.2.1 The growth of bacteria……………………………………………….11
2.2.2 OD measurement, decrease the bacterial OD………………………...11
2.2.3 Medium preparation ………………………………………………....11
2.2.4 0.2% of sodium lactate fermentation…………………………………12
2.2.5 0.15% of MF working as inhibitor in the fermentation………………13
2.2.6 ALS enzyme activity blocking by 0.15% MF………………………...14
2.2.7 Animal experiment…………………………………………………..14
2.2.8 Measurement of human sweat………………………………………..16
3: Results………….………………………………………………………………..17
3.1 0.02% of Sodium lactate fermentation………………………………………...17
3.2 0.15% of MF working as inhibitor…………………………………………….18
3.3 ALS enzyme activity blocking………………………………………………...19
3.4 0.02% of SL fermentation’ voltage measurement on mice……………………20
3.5 0.15% of MF working as inhibitor’ voltage measurement on mice…………...21
3.6 Voltage measurement on mouse back skin treated with acetic acid…..………22
3.7 Human sweat measured by skin patch………………………………………...23
3.7.1 Human sweat measured by skin detection…………………………..25
4: Conclusion and discussions…………..………………………………………….26
5: References………………….……………………………………………………28
Appendixes…………………………………………………………………………31
參考文獻 1.Hussain, J. N., Mantri, N., & Cohen, M. M.Working Up a Good Sweat - The Challenges of Standardising Sweat Collection for Metabolomics Analysis. The Clinical biochemist. Reviews (2017). 38(1), 13-34.
2.Brit J Dermatol. Chen X, Gasecka P, Formanek F, Galey JB, Rigneault H. In vivo single human sweat gland activity monitoring using coherent anti-Stokes Raman scattering and two-photon excited autofluorescence microscopy. 2016;174:803–12.
3. Shields SA, MacDowell KA, Fairchild SB, Campbell ML. Is mediation of sweating cholinergic, adrenergic, or both? A comment on the literature. Psychophysiology. 1987;24:312–9.
4.Peng Y, Cui X, Liu Y, Li Y, Liu J, Cheng B Systematic review focusing on the excretion and protection roles of sweat in the skin. Dermatology. 2014;228:115–20
5.Int J Anal Chem. Jadoon S, Karim S, Akram MR, Kalsoom Khan A, Zia MA, Siddiqi AR Recent developments in sweat analysis and its applications et al 2015;2015:164974
6.Sato K., Kang W.H., Saga K., Sato K.TBiology of sweat glands and their disorders. I. Normal sweat gland function Journal of the American Academy of Dermatology, 20 (4.(1989)) , pp. 537-563
7. Scand. Kondo N, Takano S, Aoki K, Shibasaki M, Tominaga H, Inoue Y Regional differences in the effect of exercise intensity on thermoregulatory sweating and cutaneous vasodilation Acta Physiol, 1998 Sep;164(1):71-8.
8. J.Dermatol. Sato K, Dobson RL Regional and individual variations in the function of the human eccrine sweat gland Invest,1970 Jun;54(6):443-9.PMID:5446389
9. Am J Physiol. Sato K, Sato F Individual variations in structure and function of human eccrine sweat gland. ,1983 Aug;245(2):R203-8.
10.Wilke K, Martin A, Terstegen L, Biel SS. A short history of sweat gland biology. Int J Cosmet Sci. ,2007;29:169–79
11.Shibasaki, M., & Crandall, C. G, Mechanisms and controllers of eccrine sweating in humans. Frontiers in bioscience (Scholar edition), 2. (2010). 685-96.
12. M. Dekker Hui, Y. H. Handbook of vegetable preservation and processing. New York: (2004).
13. McGraw-Hill Klein, Donald W.; Lansing M.; Harley, JohnMicrobiology (6th ed.). New York: (2006).
14.Otto M., Staphylococcus epidermidis--the ′accidental′ pathogen. Nature reviews. Microbiology, 7(8), (2009). 555-67.
15. Atlas of Oral Microbiology From Healthy Microflora to Disease 2015, Pages 41-65
16. Encyclopedia of Food Sciences and Nutrition (Second Edition) 2003, Pages 881-887
17. LeBlanc, J. G., Chain, F., Martín, R., Bermúdez-Humarán, L. G., Courau, S., & Langella, P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial cell factories, 16(1), 79 (2017). doi:10.1186/s12934-017-0691-z
18.Wagenaar G.T.M., Garssen J., Folkerts G. Henricks P.A.J. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells Li M(2018) European Journal of Pharmacology, 831, pp. 52-59.
19. J Physiol Sci. 2012 Nov;62(6):429-40. Derbyshire PJ, Barr H, Davis F, Higson Lactate in human sweat: a critical review of research to the present day. SP doi: 10.1007/s12576-012-0213-z. Epub 2012 Jun 8.
20. C.A. Edwards, in Encyclopedia of Food Sciences and Nutrition (Second Edition), ,2003
21. Burtenshaw J. M. The mechanism of self-disinfection of the human skin and its appendages. The Journal of hygiene, 42(2), (1942). 184-210.
22. Liu H, Cheng S, Logan BE,Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol. 2005 Jan 15;39(2):658-62.
23.Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. Federative International Committee on Anatomical Terminology (2008). Terminologia histologica: international terms for human cytology and histology, p. 121. ISBN 9780781775373
24. Zhiyong Zhang, Osama Abdel-Razek, Samuel Hawgood,, Guirong Wang , Protective Role of Surfactant Protein D in Ocular Staphylococcus aureusInfection Published: September 23, 2015 https://doi.org/10.1371/journal.pone.0138597
25. Modig, T., Lidén, G., & Taherzadeh, M. J.Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. The Biochemical journal, 363(Pt 3), (2002). 769-76.
26. National Center for Biotechnology Information. PubChem Compound Database; CID=96461, https://pubchem.ncbi.nlm.nih.gov/compound/96461 (accessed Jan. 10, 2019).
27. Wang, Y., Kuo, S., Shu, M., Yu, J., Huang, S., Dai, A., Two, A., Gallo, R. L., … Huang, C.Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris M.Applied microbiology and biotechnology,(2013) ;98(1), 411-24.
28. † Amay J. Bandodkar, ‡a Jung-Min You,‡a Nam-Heon Kim,‡a Yue Gu,‡a Rajan Kumar,a A. M. Vinu Mohan,a Jonas Kurniawan, a Somayeh Imani,b Tatsuo Nakagawa,a Brianna Parish,a Muku Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat, Royal socity of chemistry(2017). DOI: 10.1039/c7ee00865a
指導教授 黃俊銘(Eric Huang Chun ming Huang) 審核日期 2019-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明