博碩士論文 105881603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.137.185.180
姓名 王伊娃(Eva Ari Wahyuni)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 單一與複合有機磷農藥對人類肝臟細胞和斑馬魚胚胎的細胞毒性與遺傳毒性之作用
(The cytotoxicity and genotoxicity of single and combined organophosphate pesticides in human liver cells and zebrafish embryos)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用人類肝臟細胞HepG2和斑馬魚胚胎評估單獨或混合有機磷農藥terbufos和fenthion的毒性,以確定遺傳毒性機制。我們使用單細胞凝膠電泳實驗和 H2AX 磷酸化 (γH2AX) 分析遺傳毒性,結果顯示細胞在與terbufos和/或fenthion相互混合時會導致 DNA 雙鍵斷裂 (DSB)。當濃度為40 µM,複合藥物幾乎沒有藥物毒性、基因毒性以及對同源重組 (HR) 活性的影響。在 HepG2 細胞,當細胞處理藥物後,同源重組(HR) 修復基因Xrcc2表達降低;另一方面,複合藥物也降低了非同重組NHEJ 修復基因Xrcc6的表達,此外,儘管只有 terbufos或fenthion可降低 XRCC2 蛋白表達,有機磷農藥仍可影響所有處理過的細胞Ku70的表達,無論是正調控還是負調控。在斑馬魚胚胎實驗中,暴露在有機磷農藥24 小時後,fenthion是造成 HR 基因(Rad51 和 Rad18)發生破壞的唯一有效物質;相比之下,複合藥物增加了 Rad51 和 Xrcc2(HR 基因)的表達水平,單獨使用terbufos或fenthion則阻礙了 Rad51、Rad18、Xrcc2 和 Xrcc6 基因表達。此外,fenthion或複合藥物降低斑馬魚的孵化率。總之,terbufos、fenthion和複合藥物在 HepG2 細胞和斑馬魚胚胎中誘導了 DNA 雙鍵斷裂。此外,我們發現terbufos和fenthion複合藥物顯示出拮抗作用並降低HepG2和斑馬魚胚胎的毒性,這是一個新發現。
摘要(英) The individual and combined pesticides of terbufos and fenthion were evaluated using human hepatoma cell line HepG2 and zebrafish embryos to specify the genotoxicity mechanism. To analyze the genotoxicity, the neutral comet assay and H2AX phosphorylation (γH2AX) were used and showed that exposed cells caused DNA double strand breaks (DSBs) when mixed with terbufos and/or fenthion. At the level of equimolar concentration (40 µM), the pesticide combination showed almost no toxicity, genotoxicity, and effects on homologous recombination (HR) activity. Within HepG2 cells, cells exposed to the individual and combined treatment showed decreased expression of Xrcc2, which is an HR repair gene; on the other hand, the combined pesticides decreased expression of one of the Non-homologous end joining (NHEJ) repair genes, called Xrcc6. Moreover, although only terbufos or fenthion managed to lessen XRCC2 protein expression, Ku70 affected all cells treated irrespective of up- or downregulation. In zebrafish embryos, fenthion was found to be the only effective substance to cause HR genes (Rad51 and Rad18) to experience disruption following exposure for 24 h; in contrast, the combined pesticides increased the level of Rad51 and Xrcc2 (HR genes) expression while at the same time impeding Rad51, Rad18, Xrcc2, and Xrcc6 genes with terbufos or fenthion only. Furthermore, fenthion or the pesticide combination impaired the hatching rate of zebrafish. To conclude, terbufos, fenthion, and the combined pesticides induced DSBs in the HepG2 cells and zebrafish embryos. Furthermore, we found terbufos and fenthion show antagonism in combination and reduce the toxicity in HepG2 or zebrafish embryos, this is a novel finding.
關鍵字(中) ★ NHEJ
★ HR
★ Terbufos
★ Fenthion
★ γH2AX
關鍵字(英) ★ NHEJ
★ HR
★ Terbufos
★ Fenthion
★ γH2AX
論文目次 (A). Referred papers:iii
(B). Abstracts presented in meetings: iii
中文摘要iv
Abstract.vi
Acknowledgementsvii
Table of Contents .viii
List of Figuresxi
List of Tablesxiii
Abbreviations..xiv
Chapter 1: Introduction .. 1
1.1 Organophosphate pesticides (OPs) 1
1.1.1 OPs genotoxicity . 1
1.1.2 OPs and DNA repair 3
1.2 Single and mixture exposure of OPs 4
1.2.1 Additivity:.. 5
1.2.2 Synergism: . 5
1.2.3 Antagonism: .. 5
1.3 Terbufos and fenthion 6
1.4 DNA DSB repair 8
1.4.1 Homologous recombination (HR) 9
1.4.2 Non-homologous end joining (NHEJ) 10
1.5 Human liver cells 11
1.6 Zebrafish embryos 12
1.7 Specific aim of the thesis 13
Chapter 2: Materials and Methods 16
2.1 Cell culture. 16
2.2 Pesticide exposure . 16
2.3 Cell viability assay. 17
2.4 Zebrafish maintenance and embryo exposure 17
2.5 Comet assays. 18
2.6 HR assay.. 19
2.7 RNA isolation and qRT-PCR assays. 19
2.8 Western blotting . 20
2.9 Statistical analysis . 20
Chapter 3: Results. 21
3.1 Cellular response to cell viability and DNA damage after delivery
of terbufos, fenthion, and their combinations to human liver cells 21
3.2 The correlation of single or combined pesticide exposure in HR activity in HepG2 cells 22
3.3 The expression of repair genes and proteins related to HR and NHEJ repair pathways in HepG2 cells treated with terbufos,
fenthion, and their combination .. 23
3.4 The expression of repair genes to HR and NHEJ repair pathways in zebrafish embryos treated with terbufos, fenthion, and their
combination 25
3.5 Single exposure to terbufos or fenthion induced DNA damage in zebrafish embryos . 25
Chapter 4: Discussion . 27
4.1 To determine if HepG2 and L-02 cells are appropriate, a model was tested to detect the genotoxicity mechanism of OPs (terbufos
or fenthion). 27
4.2 Genotoxicity concentration of terbufos or fenthion. 28
4.3 Antagonistic interactions of the combined pesticides. 29
4.4 Terbufos or fenthion impacted gene and protein repair pathways 30
4.5 Zebrafish embryo used as in vivo model of OPs (terbufos or fenthion) .. 33
Summary . 35
References.. 36
Figures.. 54
參考文獻 1. Costa, L. G., Cole, T. B., and Furlong, C. E. Polymorphisms of paraoxonase (PON1) and their significance in clinical toxicology of organophosphates. Journal of Toxicology Clinical Toxicology. 2003; 41, 37-45.
2. Hreljac, I., Zajc, I., Lah, T., Filipič, M. Effects of model organophosphorous pesticides on DNA damage and proliferation of HepG2 cells. Environmental and Molecular Mutagenesis. 2008; 49, 360–367.
3. Koutros, S., Beane Freeman, L. E., Lubin, J. H., Heltshe, S. L., Andreotti, G., Barry, K. H., . . . Alavanja, M. C. Risk of total and aggressive prostate cancer and pesticide use in the Agricultural Health Study. American Journal Epidemiology. 2013; 177(1), 59-74.
4. Lerro, C. C., Koutros, S., Andreotti, G., Friesen, M. C., Alavanja, M. C., Blair, A., . . . Beane Freeman, L. E. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occupational and Environmental Medicine. 2015; 72(10), 736-744.
5. VoPham, T., Brooks, M. M., Yuan, J. M., Talbott, E. O., Ruddell, D., Hart, J. E., . . . Weissfeld, J. L. Pesticide exposure and hepatocellular carcinoma risk: A case-control study using a geographic information system (GIS) to link SEER-Medicare and California pesticide data. Environmental Research. 2015; 143(Pt A), 68-82.
6. Ding, G., Han, S., Wang, P., Gao, Y., Shi, R., Wang, G., & Tian, Y. J. E. p. Increased levels of 8-hydroxy-2′-deoxyguanosine are attributable to organophosphate pesticide exposure among young children. Environmental Health Perspectives. 2012; 167, 110-114.
7. Timoroglu, I., Yuzbasioglu, D., Unal, F., Yilmaz, S., Aksoy, H., & Celik, M. Assessment of the genotoxic effects of organophosphorus insecticides phorate and trichlorfon in human lymphocytes. Environmental Toxicology. 2014; 29(5), 577-587.
8. Yang, H.Y., Feng R., Liu J., Wang H.Y., Wang Y.D. Increased frequency of micronuclei in binucleated lymphocytes among occupationally pesticide-exposed populations: a meta-analysis. Asian Pacific Journal Cancer Prevention. 2014; 15, 6955–6960.
9. Li, D., Huang, Q., Lu, M., Zhang, L., Yang, Z., Zong, M., & Tao, L. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere. 2015; 135, 387-393.
10. Wu, J. C., Hseu, Y. C., Tsai, J. S., Chen, L. C., Chye, S.M., Chen, C. H., Ching Chen, S. Fenthion and terbufos induce DNA damage, the expression of tumor‐related genes, and apoptosis in HEPG2 cells. Environmental and Molecular Mutagenesis. 2011; 52, 529–537.
11. Hung, J. H., Chen, C. Y., Omar, H.A., Huang, K. Y., Tsao, C. C., Chiu, C. C., Chen, Y. L., Chen, P. H., Teng, Y. N. Reactive oxygen species mediate Terbufos‐induced apoptosis in mouse testicular cell lines via the modulation of cell cycle and pro‐apoptotic proteins. Environmental Toxicology. 2016; 31, 1888–1898.
12. Somdare, P.O., Nwani, C.D., Nwadinigwe, A.O., Nwani, J.C., Odo, G.E., Ugbor, O.N., Ukonze, J.A., Ezeibe, A.B.C.A. Fenthion induced toxicity and histopathological changes in gill tissue of freshwater African catfish, Clarias gariepinus (Burchell, 1822). African Journal of Biotechnology. 2015; 14, 2103–2113.
13. Yan, S., Sorrell, M., & Berman, Z. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cellular and Molecular Life Sciences. 2014; 71(20), 3951-3967.
14. Zhang, X., A.D. Wallace, Pan Du, Warren A.K., Nadereh J., Hehuang X. Simon L., Andrea B., Marcelo B.S., and Lifang H. DNA methylation alterations in response to pesticide exposure in vitro. Environmental and Molecular Mutagenesis. 2012; 53, 542-549.
15. Lu, C., Liu, X., Liu, C., Wang, J., Li, C., Liu, Q., . . . Shao, J. Chlorpyrifos Induces MLL Translocations Through Caspase 3-Dependent Genomic Instability and Topoisomerase II Inhibition in Human Fetal Liver Hematopoietic Stem Cells. Toxicological Sciences. 2015; 147(2), 588-606.
16. Liu, W., Du, Y., Liu, J., Wang, H., Sun, D., Liang, D., . . . Shang, J. Effects of atrazine on the oxidative damage of kidney in Wister rats. International Journal of Clinical and Experimental Medicine. 2014; 7(10), 3235-3243.
17. Xu, D., Liang, D., Guo, Y., & Sun, Y. Endosulfan causes the alterations of DNA damage response through ATM-p53 signaling pathway in human leukemia cells. Environmental Pollution. 2018; 238, 1048-1055.
18. Khanna, K. K., & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genetics. 2001; 27(3), 247-254.
19. van Gent, D.C., Jan H.J.H., and Roland K. Chromosomal stability and the DNA double-stranded break connection. Nature Reviews Genetics. 2001; 2, 196–206.
20. Ghosal, G., and Junjie C. DNA damage tolerance: a double-edged sword guarding the genome. Translational Cancer Research. 2013; 2(3), 107–129.
21. Sebastian, Robin and Sathees C. Raghavan. Induction of DNA damage and erroneous repair can explain genomic instability caused by endosulfan. Carcinogenesis. 2016; 37 (10), 929-940.
22. Suárez-Larios, K., Salazar-Martínez, A.-M., & Montero-Montoya, R. Screening of Pesticides with the Potential of Inducing DSB and Successive Recombinational Repair. Journal of Toxicology. 2017; ID3574840, 9p.
23. Zaunbrecher, V., Dale, H., Ron M., Susan K., Timothy M., and John F. Exposure and interaction: the potential health impacts of using multiple pesticides. 2016; 44p.
24. Donald, D.B., Cessna, A.J., Sverko, E., Glozier, N.E. Pesticides in Surface Drinking-Water Supplies of the Northern Great Plains. Environmental Health Perspectives. 2007; 115, 1183–1191.
25. Damalas, C.A., Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. International Journal of Environmental Research and Public Health. 2011; 8, 1402–1419.
26. González-Alzaga, B., Lacasaña, M., Aguilar-Garduño, C., Rodríguez-Barranco, M., Ballester, F., Rebagliato, M., Hernández, A.F. A systematic review of neurodevelopmental effects of prenatal and postnatal organophosphate pesticide exposure. Toxicology letters. 2014; 230, 104–121.
27. Boffetta, P., Desai, V., Exposure to permethrin and cancer risk: A systematic review. Critical reviews in toxicology. 2018; 48, 433–442.
28. Hernández, A.F., Gil, F., Lacasaña, M. Toxicological interactions of pesticide mixtures: an update. Archives of Toxicology. 2017; 91, 3211–3223.
29. Bopp, S.K., Barouki, R., Brack, W., Dalla Costa, S., Dorne, J. L.C., Drakvik, P.E., Faust, M., Karjalainen, T.K., Kephalopoulos, S., van Klaveren, J. Current EU research activities on combined exposure to multiple chemicals. Environment International. 2018; 120, 544–562.
30. Abhishek, A., Ansari, N.G., Shankhwar, S.N., Jain, A., Singh, V. In vitro toxicity evaluation of low doses of pesticides in individual and mixed condition on human keratinocyte cell line. Bioinformation. 2014; 10, 716.
31. Romero, A., Ramos, I. A., Castellano, V., Martinez, M., Martinez-Larranaga, M. R., Anadon, A., Martinez, A.A. Evidence for dose-additive effects of a type II pyrethroid mixture: In vitro assessment. Environmental Research. 2015; 138, 58-66.
32. Ilboudo, S., Fouche, E., Rizzati, V., Toe, A. M., Gamet-Payrastre, L., Guissou, P. I. In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2. Toxicology Reports. 2014; 1, 474-489.
33. Ojha, A., Yaduvanshi, S. K., Pant, S. C., Lomash, V., & Srivastava, N. Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environmental Toxicology. 2013; 28(10), 543-552.
34. Wang, Jin-Hua, Lu-Sheng Zhu, Yan Meng, Jun Wang, Hui Xie, and Qing-Ming Zhang. The combined stress effects of atrazine and cadmium on the earthworm Eisenia fetida. Environmental Toxicology Chemistry. 2012; 31, 1-6.
35. Liang, Y., Tong, F., Zhang, L., Li, W., Huang, W., & Zhou, Y. Fatal poisoning by terbufos following occupational exposure. Clinical Toxicology. 2018; 56(2), 140-142.
36. Bonner, M. R., Williams, B. A., Rusiecki, J. A., Blair, A., Beane Freeman, L. E., Hoppin, J. A., Dosemeci, M., Lubin, J., Sandler, D.P., and Alavanja, M. C. Occupational exposure to terbufos and the incidence of cancer in the Agricultural Health Study. Cancer Causes Control. 2010; 21(6), 871-877.
37. Sevgiler, Y., & Uner, N. Tissue-specific effects of fenthion on glutathione metabolism modulated by NAC and BSO in Oreochromis niloticus. Drug and Chemical Toxicology. 2010; 33(4), 348-356.
38. Alavanja, M. C., Hofmann, J. N., Lynch, C. F., Hines, C. J., Barry, K. H., Barker, J., . . . Beane Freeman, L. E. Non-hodgkin lymphoma risk and insecticide, fungicide and fumigant use in the agricultural health study. PLoS One. 2014; 9(10), e109332.
39. Muralidharan, L. J. I. J. F. A. S. Chronic toxic impacts of fenthion on the profiles of enzymes in the freshwater fish Cyprinus carpio (Linn). International Journal of Fisheries and Aquatic Studies. 2014; 1, 51-56.
40. Environmental Protection Agency. Fenthion: notice of receipt of request to voluntarily cancel certain pesticide registrations. Environmental Protection Agency. 2003; 68, 32495–32497.
41. Pest Managing Regulatory Agency, 2004. Reevaluation of fenthion. Reevaluation decision document, PMRA, RRD 2004-10.
42. Nwani, C. D., Somdare, P. O., Ogueji, E. O., Nwani, J. C., Ukonze, J. A., & Nwadinigwe, A. O. Genotoxicity assessment and oxidative stress responses in freshwater African catfish Clarias gariepinus exposed to fenthion formulations. Drug and Chemical Toxicology. 2017; 40(3), 273-280.
43. Ma S. Fenthion (Pesticide residues in food: 1995 evaluations Part II Toxicological & Environmental), Health Evaluation Division, Pest Management Regulatory Agency, Health Canada, Ottawa, Canada. 1995. http://www.inchem.org/documents/jmpr/jmpmono/v95pr07. htm
44. Chang, J-M., Tay-Hwa C., and Tony J.F. Pesticide residue monitoring in marketed fresh vegetables andfruit in central Taiwan (1999-2004) and an introduction to the HACCP system. Journal of Food and Drug Analysis. 2005; 13, 378-376.
45. Kasiotis, K.M., Anagnostopoulos, C., Anastasiadou, P., Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC–MS/MS screening: Reported death incidents in honeybees. Science of The Total Environment. 2014; 485–486, 633–642.
46. Nai, Y. S., Chen, T. Y., Chen, Y. C., Chen, C. T., Chen, B. Y., Chen, Y. W. Revealing Pesticide Residues Under High Pesticide Stress in Taiwan’s Agricultural Environment Probed by Fresh Honey Bee (Hymenoptera: Apidae) Pollen. Journal of Economic Entomology. 2017; 110, 1947–1958.
47. Sun, F., Wong, S.S., and Li, G. C. Risk assessment of organophosphates to aquatic organisms. Journal of the Society of Plant Protection. 2002; 44, 171-183.
48. Zhang, J., Liu, L., Ren, L., Feng, W., Lv, P., Wu, W., Yan, Y. The single and joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish (Danio rerio) early life stages. Journal of Hazardous Materials. 2017; 334, 121–131.
49. Sirbu, B. M., and David C. DNA Damage Response: Three Levels of DNA Repair Regulation. Cold Spring Harbor Perspectives in Biology. 2013;5: a012724, 17p.
50. Christmann, M., Tomicic, M. T., P. Roos, W. P., Kaina, B. 2003. Mechanism of human DNA repair: an update. Toxicology. 2003; 193, 3-34.
51. Pandey, M., Raghavan, S.C. DNA double-strand break repair in mammals. Journal of Radiation and Cancer Research. 2017; 8, 93.
52. Han, J., Huang, J. DNA double-strand break repair pathway choice: The fork in the road. Genome Instability & Disease. 2020; 1, 10–19.
53. Johnson, R. D., Liu, N. & Jasin, M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature. 1999; 401, 397–399.
54. Featherstone, C. and Jackson, S. P. Magazines, DNA double-strand break repair. Current Biology. 1999; volume 9, Issue 20, 21 October, Pages R759-R761.
55. Tanaka, T., Halicka, H. D., Huang, X., Traganos, F. & Darzynkiewicz, Z.Constitutive histone H2AX phosphorylation and ATM activation, the reporters of DNA damage by endogenous oxidants. Cell Cycle. 2006; 5, 1940–5.
56. O’Donovan, P. J. & Livingston, D. M. BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis. 2010; 31, 961–7.
57. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999; 286, 1162–6.
58. Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997; 88, 265–75.
59. Zhang, F. et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Current Biology. 2009; 19, 524–529.
60. McKenzie K. Grundy, Ronald J. Buckanovich, and Kara A. Bernstein. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer. 2020; Vol. 2, No. 3.
61. Suwaki, N., Klare, K. & Tarsounas, M. RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Seminar in Cell & Developmental Biology. 2011; 22, 898–905.
62. Thacker, J. The use of integrating DNA vectors to analyse the molecular defects in ionising radiation-sensitive mutants of mammalian cells including ataxia telangiectasia. Mutation Research. 1989; 220, 187–204.
63. Cartwright, R., Tambini, C. E., Simpson, P. J. & Thacker, J. The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucleic Acids Research. 1998; 26, 3084–9.
64. Liu, N. XRCC2 is required for the formation of Rad51 Foci Induced by Ionizing Radiation and DNA cross-linking agent mitomycin C. Journal of Biomedicine & Biotechnology. 2002; 2, 106–113.
65. Tambini, C. E., Spink, K. G., Ross, C. J., Hill, M. A. & Thacker, J. The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair (Amst). 2010; 9, 517–25.
66. Meindl, A. et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nature Genetics. 2010; 42, 410–4.
67. Gao, L.-B. et al. RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies. Breast Cancer Research and Treatment. 2011; 125, 827–35.
68. Loveday, C. et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nature Genetics. 2011; 43, 879–82.
69. Loveday, C. et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nature Genetics. 2012; 44, 475–6; author reply 476.
70. Chun, J., Buechelmaier, E. S. & Powell, S. N. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Molecular and Cellular Biology. 2013; 33, 387–395.
71. Prakash, R., Zhang, Y., Feng,W. and Jasin,M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harbor Perspective in Biology. 2015; 7, a016600.
72. Thacker, J. The RAD51 gene family, genetic instability and cancer. Cancer Letters. 2005; 219, 125–35.
73. Nagathihalli, N.S., Nagaraju, G. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2011; 1816, 209–218.
74. Chen, C.-C. et al. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair. Proceeding of the National Academy of Sciences of the United States of America. 2017; 114, 7665–7670.
75. Gachechiladze, M., Škarda, J., Soltermann, A., Joerger, M. RAD51 as a potential surrogate marker for DNA repair capacity in solid malignancies. International Journal of Cancer. 2017; 141, 1286-1294.
76. Ruhe M., Rabe D., Jurischka C., Schröder J, Schierack P., Deckert, P.M., Rödiger, S. Molecular biomarkers of DNA damage in diffuse large-cell lymphoma—a review. Journal of Laboratory and Precision Medicine. 2019; 4:5, 20p.
77. Li, Peng, He, Chao, Gao, Aidi, Yan, Xueqi, Xia, Xiaochun, Zhou, Jundong and Wu, Jinchang. RAD18 promotes colorectal cancer metastasis by activating the epithelial‑mesenchymal transition pathway. Oncology Reports. 2020; 44, 213-223.
78. Huang, J., Huen, M.S.Y., Kim, H., Yun Leung, C.C., Glover, J.N.M., Yu, X., Chen, J. RAD18 transmits DNA damage signaling to elicit homologous recombination repair. Nature Cell Biology. 2009; 11, 592–603.
79. Sasatani, M., Xu, Y., Kawai, H., Cao, L., Tateishi, S., Shimura, T., Li, J., Iizuka, D., Noda, A., Hamasaki, K., Kusunoki, Y., Kamiya, K. RAD18 activates the G2/M checkpoint through DNA damage signaling to maintain genome integrity after ionizing radiation exposure. PLoS One. 2015; 10, e0117845.
80. Yu, W., Li, L., Wang, G., Zhang, W., Xu, J., Liang, A. KU70 Inhibition impairs both non-homologous end joining and homologous recombination DNA damage repair through SHP-1 induced dephosphorylation of SIRT1 in adult T-cell leukemia-lymphoma cells. Cellular Physiology and Biochemistry. 2018; 49, 2111–2123.
81. Weber, G. F. DNA Repair. In: Molecular Mechanisms of Cancer. Springer, Dordrecht. Chapter 6. 2007; pp 285-308.
82. Cannan, W.J. and David S. P. 2016. Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin. Journal of Cell Physiology. 2016 January; 231(1), 3–14.
83. Reynolds P, Anderson JA, Harper JV, Hill MA, Botchway SW, Parker AW, O′Neill P. The dynamics of Ku70/80 and DNA-PKcs at DSBs induced by ionizing radiation is dependent on the complexity of damage. Nucleic Acids Research. 2012; 40(21), 10821–10831.
84. Burma, S., Chen, B. P., Murphy, M., Kurimasa, A. & Chen, D. J. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. The Journal of Biological Chemistry. 2001; 276, 42462–7.
85. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genetics. 2001; 27, 247–254.
86. Walker, J. R., Corpina, R. A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001; 412, 607–614.
87. Costantini, S., Di Bernardo, G., Cammarota, M., Castello, G., & Colonna, G. Gene expression signature of human HepG2 cell line. Gene. 2013; 518(2), 335-345.
88. Knasmuller, S., Parzefall, W., Sanyal, R., Ecker, S., Schwab, C., Uhl, M., . . . Natarajan, A. T. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutation Research. 1998; 402(1-2), 185-202.
89. Mersch-Sundermann, V., Knasmuller, S., Wu, X. J., Darroudi, F., & Kassie, F. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology. 2004; 198(1-3), 329-340.
90. Huan, L. C., Wu, J. C., Chiou, B. H., Chen, C. H., Ma, N., Chang, C. Y., . . . Chen, S. C. MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology. 2014; 322, 69-77.
91. Pirozzi, A. V., Stellavato, A., La Gatta, A., Lamberti, M., & Schiraldi, C. Mancozeb, a fungicide routinely used in agriculture, worsens nonalcoholic fatty liver disease in the human HepG2 cell model. Toxicology Letters. 2016; 249, 1-4.
92. Hseu, Y. C., Hsu, T. W., Lin, H. D., Chen, C.H., Chen, S.C. Molecular mechanisms of discrotophos-induced toxicity in HepG2 cells: The role of CSA in oxidative stress. Food and Chemical Toxicology. 2017; 103, 253–260.
93. Medina‐Díaz, I.M., Ponce‐Ruiz, N., Ramírez‐Chávez, B., Rojas‐García, A.E., Barrón‐Vivanco, B.S., Elizondo, G., Bernal‐Hernández, Y.Y. Downregulation of human paraoxonase 1 (PON1) by organophosphate pesticides in HepG2 cells. Environmental toxicology. 2017; 32, 490–500.
94. Kao, C. M., Ou, W. J., Lin, H. D., Eva, A. W., Wang, T. L., & Chen, S. C. Toxicity of diuron in HepG2 cells and zebrafish embryos. Ecotoxicology and Environmental Safety. 2019; 172, 432-438.
95. Luo, L., Wang, F., Zhang, Y., Zeng, M., Zhong, C., Xiao, F. In vitro cytotoxicity assessment of roundup (glyphosate) in L-02 hepatocytes. Journal of Environmental Science and Health. 2017; Part B 52, 410–417.
96. Hu X, Yang T, Li C, Zhang L, Li M, Huang W, et al. Human fetal hepatocyte line, L-02, exhibits good liver function in vitro and in an acute liver failure model. In: Transplantation Proceedings. Elsevier. 2013; p. 695–700.
97. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496, 498–503.
98. Lee, K. Y., Jang, G. H., Byun, C. H., Jeun, M., Searson, P. C., & Lee, K. H. Zebrafish models for functional and toxicological screening of nanoscale drug delivery systems: promoting preclinical applications. Bioscience Reports. 2017; 37(3).
99. Pei, D. S., & Strauss, P. R. Zebrafish as a model system to study DNA damage and repair. Mutation Research. 2013; 743-744, 151-159.
100. Zhang, J., Liu, L., Ren, L., Feng, W., Lv, P., Wu, W., & Yan, Y. The single and joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish (Danio rerio) early life stages. Journal of Hazardous Materials. 2017; 334, 121-131.
101. D’Costa, A. H., Shyama, S. K., Praveen Kumar, M. K., & Fernandes, T. M. J. I. A. R. Induction of DNA damage in the peripheral blood of zebrafish (Danio rerio) by an agricultural organophosphate pesticide, monocrotophos. International Aquatic Research. 2018; 10(3), 243-251.
102. Si, J., Zhou, R., Song, J., Gan, L., Zhou, X., Di, C., . . . Zhang, H. Toxic effects of 56 Fe ion radiation on the zebrafish (Danio rerio) embryonic development. Aquatic Toxicology. 2017; 186, 87-95.
103. Wang, Y., Wu, S., Chen, J., Zhang, C., Xu, Z., Li, G., . . . Wang, Q. Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints. Chemosphere. 2018; 192, 14-23.
104. Cao, F., Souders, C. L., 2nd, Li, P., Adamovsky, O., Pang, S., Qiu, L., & Martyniuk, C. J. Developmental toxicity of the fungicide ziram in zebrafish (Danio rerio). Chemosphere. 2019; 214, 303-313.
105. Chang, Y., Lee, W. Y., Lin, Y. J., & Hsu, T. Mercury (II) impairs nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos by targeting primarily at the stage of DNA incision. Aquatic Toxicology. 2017; 192, 97-104.
106. Lu, C. J., Jiang, X. F., Junaid, M., Ma, Y. B., Jia, P. P., Wang, H. B., & Pei, D. S. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. Chemosphere. 2017; 184, 795-805.
107. Reinardy, H. C., Dharamshi, J., Jha, A. N., & Henry, T. B. Changes in expression profiles of genes associated with DNA repair following induction of DNA damage in larval zebrafish Danio rerio. Mutagenesis. 2013; 28(5), 601-608.
108. Bladen, C. L., Navarre, S., Dynan, W. S., & Kozlowski, D. J. Expression of the Ku70 subunit (XRCC6) and protection from low dose ionizing radiation during zebrafish embryogenesis. 2007; Neuroscience Letters, 422(2), 97-102.
109. Hagmann, M., Bruggmann, R., Xue, L., Georgiev, O., Schaffner, W., Rungger, D., . . . Gerster, T. Homologous recombination and DNA-end joining reactions in zygotes and early embryos of zebrafish (Danio rerio) and Drosophila melanogaster. Biological Chemistry. 1998; 379(6), 673-681
110. Fan, L., Moon, J., Crodian, J., & Collodi, P. Homologous recombination in zebrafish ES cells. Transgenic Research. 2006; 15(1), 21-30.
111. Bladen, C. L., Lam, W. K., Dynan, W. S., & Kozlowski, D. J. DNA damage response and Ku80 function in the vertebrate embryo. Nucleic Acids Research. 2005; 33(9), 3002-3010.
112. Shao, B., Zhu, L., Dong, M., Wang, J., Wang, J., Xie, H., . . . Zhu, S. DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology. 2012; 21(5), 1533-1540.
113. Zon, L. I., & Peterson, R. T. In vivo drug discovery in the zebrafish. Nature Reviews Drug Discovery. 2005; 4(1), 35-44.
114. Chueh, T. C., Hsu, L. S., Kao, C. M., Hsu, T. W., Liao, H. Y., Wang, K. Y., Chen, S. C. Transcriptome Analysis of Zebrafish Embryos Exposed to Deltamethrin. Environmental Toxicology. 2016; 32(5), 1548-1557.
115. Kamel, F., Hoppin, J.A. Association of pesticide exposure with neurologic dysfunction and disease. Environmental Health Perspectives. 2004; 112, 950–958.
116. Satoh, T., Gupta, R.C. Anticholinesterase pesticides: metabolism, neurotoxicity, and epidemiology. John Wiley & Sons. 2011; 617p.
117. Chang, J. M., Chen, T. H., Fang, T. Pesticide residue monitoring in marketed fresh vegetables and fruits in Central Taiwan (1999–2004) and an introduction to the HACCP system. Journal of Food and Drug Analysis. 2005; 13, 368–376.
118. Wahyuni, E.A., Lin, H. D., Lu, C. W., Kao, C. M. Chen, S. C. The cytotoxicity and genotoxicity of single and combined fenthion and terbufos treatments in human liver cells and zebrafish embryos. Science of The Total Environmental. 2021; Vol. 758.
119. Lin, H. D., Wang, F. Z., Lee, C. Y., Nien, C. Y., Tseng, Y. K., Yao, C. L., Chen, S.C. 4-Aminobiphenyl inhibits the DNA homologous recombination repair in human liver cells: The role of miR-630 in downregulating RAD18 and MCM8. Toxicology. 2020; 152441.
120. Lin, H. D., Hsu, L. S., Chien, C. C., Chen, S. C. Proteomic analysis of ametryn toxicity in zebrafish embryos. Environmental Toxicology. 2018; 33(5), 579-586.
121. Shields, J.N., Hales, E.C., Ranspach, L.E., Luo, X., Orr, S., Runft, D., Dombkowski, A., Neely, M.N., Matherly, L.H., Taub, J.W. Exposure of Larval Zebrafish to the Insecticide Propoxur Induced Developmental Delays that Correlate with Behavioral Abnormalities and Altered Expression of hspb9 and hspb11. Toxics. 2019; 7, 50.
122. Anderson, D., A. Dhawan, and J. Laubenthal, The comet assay in human biomonitoring. Methods in Molecular Biology (Clifton, N.J.). 2013; 1044: p. 347.
123. Kinner, A., Wu, W., Staudt, C., & Iliakis, G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Research. 2008; 36(17), 5678-5694.
124. Podhorecka, M., Skladanowski, A., & Bozko, P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. Journal of Nucleic Acids. 2010; ID 920161, 9p.
125. Nagathihalli, N.S., Nagaraju, G. RAD51 as a potential biomarker and therapeutic target for pancreatic cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2011; 1816, 209–218.
126. Bressac, B., Galvin, K.M., Liang, T.J., Isselbacher, K.J., Wands, J.R., Ozturk, M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proceedings of the National Academy of Sciences. 1990; 87, 1973–1977.
127. Knasmüller, S., Parzefall, W., Sanyal, R., Ecker, S., Schwab, C., Uhl, M., Mersch-Sundermann, V., Williamson, G., Hietsch, G., Langer, T. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1998; 402, 185–202.
128. Kirkland, D., Pfuhler, S., Tweats, D., Aardema, M., Corvi, R., Darroudi, F., Elhajouji, A., Glatt, H., Hastwell, P., Hayashi, M. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2007; 628, 31–55.
129. Manzano, B.C., Roberto, M.M., Hoshina, M.M., Menegário, A.A., Marin-Morales, M.A. Evaluation of the genotoxicity of waters impacted by domestic and industrial effluents of a highly industrialized region of São Paulo State, Brazil, by the comet assay in HTC cells. Environmental Science and Pollution Research. 2015; 22, 1399–1407.
130. Huk, A., Collins, A.R., El Yamani, N., Porredon, C., Azqueta, A., de Lapuente, J., Dusinska, M. Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis. 2015; 30, 85–88.
131. Graillot, V., Takakura, N., Hegarat, L.L., Fessard, V., Audebert, M., Cravedi, J.-P. Genotoxicity of pesticide mixtures present in the diet of the French population. Environmental and Molecular Mutagenesis. 2012; 53, 173–184.
132. Jamil, K., Shaik, A.P., Mahboob, M., Krishna, D. Effect of organophosphorus and organochlorine pesticides (monochrotophos, chlorpyriphos, dimethoate, and endosulfan) on human lymphocytes in‐vitro. Drug and Chemical Toxicology. 2005; 27, 133–144.
133. Dhawan, A., Bajpayee, M., Parmar, D. Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biology and Toxicology. 2009; 25, 5–32.
134. Dreij, K., et al., Cancer Risk Assessment of Airborne PAHs Based on in Vitro Mixture Potency Factors. Environmental Science & Technology. 2017; 51(15): p. 8805.
135. Jarvis, I.W.H., Bergvall, C., Bottai, M., Westerholm, R., Stenius, U., Dreij, K. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter. Toxicology and Applied Pharmacology. 2013; Feb 1; 266(3):408-18.
136. Mah, L.J., El-Osta, A., Karagiannis, T.C. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010; 24, 679–686.
137. Revet, I., Feeney, L., Bruguera, S., Wilson, W., Dong, T.K., Oh, D.H., Dankort, D., Cleaver, J.E. Functional relevance of the histone γH2AX in the response to DNA damaging agents. Proceedings of the National Academy of Sciences. 2011; 108, 8663–8667.
138. Liang, Y., Tong, F., Zhang, L., Li, W., Huang, W., Zhou, Y. Fatal poisoning by terbufos following occupational exposure. Clinical Toxicology. 2017; 1-3.
139. Tomlin CDS, ed. terbufos (13071-79-9). In: The e-Pesticide Manual, Version 2.2. Surrey UK, British Crop Protection Council. 2002 https://pubchem.ncbi.nlm.nih.gov/source/hsdb/6444#section=Non-Human-Toxicity-Values-(Complete). Accessed on September 2021.
140. U.S. Department of Interior, Fish and Wildlife Service. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates. Resource Publication No. 137. Washington, DC: U.S. Government Printing Office, 1980., p. 41.
141. Rouimi, P., Zucchini-Pascal, N., Dupont, G., Razpotnik, A., Fouché, E., De Sousa, G., Rahmani, R. Impacts of low doses of pesticide mixtures on liver cell defence systems. Toxicology in Vitro. 2012; 26, 718–726.
142. Rasgele, P.G., Oktay, M., Kekecoglu, M., Muranli, F.D.G. The histopathological investigation of liver in experimental animals after short-term exposures to pesticides. Bulgarian Journal of Agricultural Science. 2015; 21, 446–453.
143. Xing, H., Wang, Z., Wu, H., Zhao, X., Liu, T., Li, S., Xu, S. Assessment of pesticide residues and gene expression in common carp exposed to atrazine and chlorpyrifos: Health risk assessments. Ecotoxicology and Environmental Safety. 2015; 113, 491–498.
144. Sultana Shaik, A., Shaik, A.P., Jamil, K., Alsaeed, A.H. Evaluation of cytotoxicity and genotoxicity of pesticide mixtures on lymphocytes. Toxicology Mechanisms and Methods. 2016; 26, 588–594.
145. Rizzati, V., Briand, O., Guillou, H., Gamet-Payrastre, L. Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chemico-Biological Interactions. 2016; 254, 231–246.
146. Hernandez, A. F., Parron, T., Tsatsakis, A. M., Requena, M., Alarcon, R., & Lopez-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology. 2013; 307, 136-145.
147. Islas-González, K., González-Horta, C., Sánchez-Ramírez, B., Reyes-Aragón, E., Levario-Carrillo, M. In vitro assessment of the genotoxicity of ethyl paraoxon in newborns and adults. Human & Experimental Toxicology. 2005; 24, 319–324.
148. Mostafalou, S., & Abdollahi, M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology. 2013; 268(2), 157-177.
149. Goldoni, A., Klauck, C.R., Da Silva, S.T., Da Silva, M.D., Ardenghi, P.G., Da Silva, L.B. DNA damage in Wistar rats exposed to dithiocarbamate pesticide mancozeb. Folia Biologica. 2014; 60, 202.
150. Bianchi, J., Cabral-de-Mello, D.C., Marin-Morales, M.A. Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. Ecotoxicology and Environmental Safety. 2015; 120, 174–183.
151. Li, G. C. and Kang, Pi, H. K. Studies on the stabilities of pesticide mixtures. Plant Protection Association. 1979; 21, 285-293.
152. Yaduvanshi, S. K., Ojha, A., Pant, S. C., Lomash, V., Srivastava, N. Monocrotophos induced lipid peroxidation and oxidative DNA damage in rat tissues. Pesticide Biochemistry and Physiology. 2010; 97: 214-222.
153. Yang, Y., Durando, M., Smith-Roe, S.L., Sproul, C., Greenwalt, A.M., Kaufmann, W., Oh, S., Hendrickson, E.A., Vaziri, C. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage. Nucleic Acids Research. 2013; 41, 2296–2312.
154. Üner, N., Sevgiler, Y., Piner, P., Durmaz, H. Modulation of fenthion-induced oxidative effects by BSO in the liver of Cyprinus carpio L. Drug and Chemical Toxicology. 2008; 31, 353–369.
155. Kanter, A., Celik, I. Acute effects of fenthion on certain oxidative stress biomarkers in various tissues of frogs (Rana ridibunda). Toxicology and Industrial Health. 2012; 28, 369–376.
156. Amara, I.B., Sefi, M., Troudi, A., Soudani, N., Boudawara, T., Zeghal, N. Fenthion, an organophosphorus pesticide, induces alterations in oxidant/antioxidant status and histopathological disorders in cerebrum and cerebellum of suckling rats. Indian Journal of Biochemistry & Biophysics. 2014; 51, 293-301.
157. Üner, N., Piner, P., Temiz, Ö. Piperonyl butoxide increases oxidative toxicity of fenthion in the brain of Oreochromis niloticus. Journal of Biochemical and Molecular Toxicology. 2014; 28, 84–90.
158. Chen, G., Gharib, T.G., Huang, C. C., Taylor, J.M., Misek, D.E., Kardia, S.L., Giordano, T.J., Iannettoni, M.D., Orringer, M.B., Hanash, S.M. Discordant protein and mRNA expression in lung adenocarcinomas. Molecular & Cellular Proteomics. 2002; 1, 304–313.
159. Tian, Q., Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V. Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE. Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Molecular & Cellular Proteomics. 2004; 3, 960–969.
160. Yu, S., Tang, S., Mayer, G.D., Cobb, G.P., Maul, J.D. Interactive effects of ultraviolet-B radiation and pesticide exposure on DNA photo-adduct accumulation and expression of DNA damage and repair genes in Xenopus laevis embryos. Aquatic Toxicology. 2015; 159, 256–266.
161. Ganesan, S., Keating, A.F. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells. Toxicology and Applied Pharmacology. 2015; 282, 252–258,
162. Ganesan, S., Keating, A.F. Bisphenol A-induced ovotoxicity involves DNA damage induction to which the ovary mounts a protective response indicated by increased expression of proteins involved in DNA repair and xenobiotic biotransformation. Toxicological Sciences. 2016; 152, 169–180.
163. Xu, K., Song, X., Chen, Z., Qin, C., He, Y., Zhan, W. XRCC2 promotes colorectal cancer cell growth, regulates cell cycle progression, and apoptosis. Medicine. 2014; 93.
164. Hsu, L. S., Chiou, B. H., Hsu, T. W., Wang, C. C., Chen, S. C. The Regulation of Transcriptome Responses in Zebrafish Embryo Exposure to Triadimefon. Environmental Toxicology. 2015; 32(1):217-226.
165. Petrovici, A., Strungaru, S.-A., Nicoara, M., Robea, M.A., Solcan, C., Faggio, C. Toxicity of Deltamethrin to Zebrafish Gonads Revealed by Cellular Biomarkers. Journal of Marine Science and Engineering. 2020; 8, 73.
166. Li, K., Wu, J.-Q., Jiang, L. L., Shen, L. Z., Li, J. Y., He, Z. H., Wei, P., Lv, Z., He, M. F. Developmental toxicity of 2, 4-dichlorophenoxyacetic acid in zebrafish embryos. Chemosphere. 2017;171, 40–48.
167. Haendel, M.A., Tilton, F., Bailey, G.S., Tanguay, R.L. Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish. Toxicological Sciences. 2004; 81, 390–400
指導教授 陳師慶 喻秋華(Ssu-Ching Chen Chiou-Hwa Yuh) 審核日期 2021-10-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明