博碩士論文 105886602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.144.90.216
姓名 阮氏玉(Thi-Ngoc Nguyen)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱
(Study of the Interaction between VHL/Vhlh Deficient Kidney Epithelial Cells and Macrophages—Relevance to the Development of Clear-Cell Renal Cell Carcinoma)
相關論文
★ 由基因微陣列分析發炎與腎臟細胞癌發生之機制★ VHL基因突變在癌前期的組織發炎機制
★ VHL剔除模型之轉錄體差異以及台灣透明細胞腎細胞癌族群之特定基因體變異之研究★ VHL knockdown HK-2 cells induce macrophage endothelial extravasation
★ ITPR2, an ER calcium channel, regulates ER stress and inflammatory response in pre-cancerous kidney tubule cells★ 透明腎臟細胞癌發生前期與組織發炎之關係研究
★ VHL與KIM-1的功能關係研究★ 血管內皮細胞在腫瘤微環境中促進透明腎細胞癌形成之研究
★ 應用大腸桿菌與酵母菌蛋白質體晶片系統性分析抗菌肽及抗生素作用之目標蛋白質★ Analysis of Gene Expression of Chronic Obstructive Pulmonary Disease and Chronic Kidney Disease to Illuminate Chronic Inflammation Associated with Tumor Microenvironment and Potential Treatment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 腎細胞癌 (renal cell carcinoma) 由腎小管上皮細胞惡化而來,佔 90%的腎臟惡性腫瘤, 其中又以腎透明細胞癌 (clear-cell renal cell carcinoma, ccRCC) 類型最多,約佔所有腎細胞癌的 70%以上。腫瘤抑制基因 von Hippel-Lindau (VHL, 位於染色體 3p25-
26) 的突變和 ccRCC 的發生率有非常密切的關係, 若此基因突變失去功能,將無法抑制細胞不正常的增生而形成腫瘤。 70% 以上的散發性腎透明细胞癌 (sporadic ccRCC) 攜帶VHL 基因突變或 VHL 表觀遺傳失活,且幾乎 100% 的遺傳性 ccRCC(在 VHL 疾病中)
皆有 VHL 突變。 越來越多研究結果證實, VHL 的突變可誘發慢性發炎,這可能是ccRCC 發展的早期表徵,而且重要的是 ccRCC 實體腫瘤含有大量浸潤的免疫細胞。這表示 ccRCC 的發生,極可能是帶有 VHL 基因突變或失活的腎小管細胞,與發炎微環境之間的相互作用誘導而成。
單核球 (monocyte) 是免疫系統中的一種白血球,單核球產生於骨髓,在血管內為單核球,血管外就分化成巨噬細胞(macrophages),它們是發炎和癌症形成的關鍵連接者。雖然科學家已發現在 VHL 突變的 ccRCC 中有大量巨噬細胞浸潤現象,然而針對VHL 喪失功能的細胞在 ccRCC 形成過程中如何激活巨噬細胞的機制仍不清楚。
透過本論文研究,我們闡明了 VHL/Vhlh 缺陷型腎小管細胞,如何與巨噬細胞互動,進而引發、促進腫瘤相關發炎與 ccRCC 形成。活體內與活體外的研究結果證實,在癌症早期階段, VHL/Vhlh 缺陷的腎上皮細胞分泌大量 IL-6 來誘導巨噬細胞浸潤,隨後刺激分化成能促腫瘤發生的腫瘤依附性巨噬細胞( tumor-associated macrophage; TAM)。被刺激分化的巨噬細胞反饋地分泌出誘導腎小管細胞的上皮間質轉化 (EMT) 的CCL18 和 TGF-β1 兩個重要細胞激素,促進 ccRCC 發展。在條件性 Vhlh 基因剔除小鼠中,阻斷 IL-6 顯著地抑制巨噬細胞外滲和分化,並減少發炎和增生現象。另一方面,在 VHL 缺失的細胞中,阻斷巨噬細胞分泌的 CCL18 和 TGF-β,也明顯抑制細胞 EMT的現象。特別是在小鼠異種移植模式中, 抑制巨噬細胞 CCL18 的表現可明顯減緩腫瘤生長和癌細胞轉移。我們的研究結果揭示了微環境中, VHL/Vhlh 缺陷型腎小管細胞和巨噬細胞互動時參與調控反饋機制的分子。未來這些分子可成爲 ccRCC 早期偵測、與治療藥物的新標靶。
摘要(英) Clear-cell renal cell carcinoma (ccRCC), the most prevalent subtype of renal cell carcinoma (up to 70% of all RCC types), is characterized by malignant tubule epithelial cells with clear cytoplasm. There is a very close causal correlation between ccRCC and inactivation of the tumor suppressor gene von Hippel-Lindau (VHL) located on chromosome 3p25‐26. Up
to 80% of sporadic ccRCC carry genomic mutations or epigenetic inactivation of VHL, and nearly 100% of familial ccRCC (in VHL disease) are VHL mutant. Accumulating evidence has indicated that ccRCC arises at the site of chronic inflammation, and this solid tumor contains a substantial number of infiltrated immune cells. This suggests that ccRCC may be induced by the interaction between kidney tubule cells carrying inactivated VHL gene and the inflammatory
microenvironment.
Monocyte-derived tissue effector cells, macrophages, are a crucial player in linking inflammation and cancer formation. Macrophage infiltration in the inflammatory microenvironment has been observed in previous studies of ccRCC models containing VHL mutations. However, the mechanism by which VHL loss-of-function cells activate macrophages during ccRCC formation has remained unclear.
In this study, we characterized the interaction between VHL-deficient kidney tubule cells and macrophages with relevance to tumor-associated inflammation and ccRCC formation.
The study demonstrated that the VHL-deficient kidney epithelial cells, representing the early stage of cancer initiation, secreted IL-6 to induce macrophage infiltration and subsequent polarization toward the pro-tumorigenic tumor-associated macrophage (TAM) phenotype both in vitro and in vivo. In the reciprocal action, the induced macrophages promote tumor development by secreting CCL18 and TGF-β1 to induce epithelial-to-mesenchymal transition (EMT) of the kidney tubule cells. Blockade of the IL-6 significantly inhibited macrophage extravasation and polarization, and reduced the inflammatory and proliferative phenotypes of the Vhlh conditional kidney knockout mouse. On the other hand, blockade of the macrophage secreted CCL18 and TGF-β inhibited the EMT-like phenotype in the VHL-deficient cells.
Specially, knocking down the expression of CCL18 in macrophages reduces tumor growth and cell metastasis in the xenograft model. The findings identified specific factors involved in a reciprocal mechanism that established the crosstalk between the tumor cells and the immune
components such as macrophages in the microenvironment. These results suggest an avenue for early detection and treatment of ccRCC.
關鍵字(中) ★ 腎透明細胞癌 關鍵字(英) ★ VHL
★ Macrophage
★ ccRCC
論文目次 Abstract------------------------------------------------------------------------------------------------------i
中文摘要---------------------------------------------------------------------------------------------------iii
誌謝辭 – ACKNOWLEDGEMENT------------------------------------------------------------------- iv
Table of contents -------------------------------------------------------------------------------------------v
List of Figures ------------------------------------------------------------------------------------------- viii
List of Tables -----------------------------------------------------------------------------------------------x
Abbreviations ---------------------------------------------------------------------------------------------- xi
Chapter 1. Literature review---------------------------------------------------------------------------1
1.1. Cancer and tumor microenvironment ..................................................................................1
1.1.1. Introduction to cancer------------------------------------------------------------------------------1
1.1.2. Tumor microenvironment -------------------------------------------------------------------------2
1.1.3. Tumor-promoting inflammation------------------------------------------------------------------3
1.1.4. Epithelial-to-mesenchymal transition and metastasis -----------------------------------------3
1.2. Renal cell carcinoma ...........................................................................................................4
1.2.1. Introduction to renal cell carcinoma -------------------------------------------------------------4
1.2.2. Clear-cell renal cell carcinoma (ccRCC) and the relation to kidney inflammation -------5
1.2.2. VHL tumor suppressor gene-----------------------------------------------------------------------5
1.2.4. Study of ccRCC: status and future directions --------------------------------------------------6
1.3. Macrophages and the tumor-associated inflammation ........................................................6
1.3.1. Introduction to macrophages----------------------------------------------------------------------7
1.3.2. TAMs and their function --------------------------------------------------------------------------8
1.4. Cytokines.............................................................................................................................8
1.5. Significance and purpose.....................................................................................................9
Chapter 2. Materials and methods------------------------------------------------------------------ 14
2.1. Mouse model and human kidney samples.........................................................................14
2.2. Cell lines and culture condition .........................................................................................14
2.3. Macrophage differentiation ...............................................................................................15
2.4. Short-hairpin RNA and lentiviral vector transduction for gene knockdown.....................15
2.5. Macrophage extravasation assay .......................................................................................16
2.6. Crystal violet assay............................................................................................................16
2.7. Flow cytometry analysis....................................................................................................17
2.8. Total RNA sequencing ......................................................................................................18
2.9. Cytokine array ...................................................................................................................18
2.10. ELISA..............................................................................................................................18
2.11. Realtime PCR validation .................................................................................................19
2.12. Immunohistochemistry (IHC) and immunofluorescence (IF) .........................................19
2.13. Cell circularity analysis ...................................................................................................19
2.14. Kidney tubule cell invasion assay ...................................................................................19
2.15. Western blotting ..............................................................................................................20
2.16. Inhibition of cytokine/chemokine and pSTAT3 activities in vitro..................................20
2.17. Xenograft experiments ....................................................................................................20
2.17.1. 786-O mixed with THP-1---------------------------------------------------------------------- 20
2.17.2. 786-O mixed with primary human CD14+ monocytes------------------------------------ 21
2.18. Statistical analysis............................................................................................................21
Chapter 3. Increase of interstitial macrophages in human ccRCC samples and mouse
kidney containing Vhlh mutant tubule cells ------------------------------------------------------ 22
3.1. Introduction and objective.................................................................................................22
3.2. Results ...............................................................................................................................22
3.2.1. Conditional Vhlh KO mouse is a good model for studying the early tumorigenic event
-------------------------------------------------------------------------------------------------------------- 22
3.2.2. Macrophages are abnormally increased in VHL/Vhlh-deficient kidney samples-------- 23
3.3. Discussion..........................................................................................................................23
Chapter 4. VHL/Vhlh-deficient kidney cells induce macrophage infiltration and
polarization toward the M2 phenotype ------------------------------------------------------------ 27
4.1. Introduction and objective.................................................................................................27
4.2. Result.................................................................................................................................28
4.2.1. VHL/Vhlh-deficient kidney tubule cells directly induce macrophage extravasation---- 28
4.2.2. VHL/Vhlh-deficient kidney tubule cells induce macrophage polarization toward protumorigenic phenotype ---------------------------------------------------------------------------------- 29
4.2.3. Tissue resident macrophages do not contribute to increased macrophage number in Vhlh
mutant kidney--------------------------------------------------------------------------------------------- 31
4.3. Discussion ------------------------------------------------------------------------------------------- 31
Chapter 5. VHL/Vhlh-deficient kidney cells secrete increased levels of IL-6 -------------- 44
5.1. Introduction and objective.................................................................................................44
5.2. Results ...............................................................................................................................44
5.3. Discussion..........................................................................................................................46
Chapter 6. IL-6 secreted from VHL/Vhlh-deficient kidney tubule cells mediates
macrophage activation and promotes pre-ccRCC phenotypes ------------------------------- 56
6.1. Introduction and objective.................................................................................................56
6.2. Results ...............................................................................................................................56
6.2.1. IL-6 secreted from VHL/Vhlh-deficient kidney tubule cells mediates macrophage
activation -------------------------------------------------------------------------------------------------- 56
6.2.2. Blockade of IL-6 signaling rescues the inflammatory and hyperplastic phenotypes of Vhlh
KO kidney------------------------------------------------------------------------------------------------- 57
6.3. Discussion..........................................................................................................................58
Chapter 7. IL-6 signaling-activated macrophages are critical for development of Vhlhdeficient phenotypes------------------------------------------------------------------------------------ 65
7.1. Introduction and objective.................................................................................................65
7.2. Results ...............................................................................................................................65
7.2.1. IL-6 signaling-activated macrophages are critical for development of Vhlh-deficient
phenotypes ------------------------------------------------------------------------------------------------ 65
7.2.2. T cell population increase in Vhlh deficient kidney is dependent on IL-6 signaling --- 66
7.3. Discussion..........................................................................................................................66
Chapter 8. IL-6 signaling-activated macrophages promote mesenchymal phenotypes of
the kidney tubule cells --------------------------------------------------------------------------------- 71
8.1. Introduction and objective.................................................................................................71
8.2. Results ...............................................................................................................................71
8.2.1. The activated macrophages promote EMT phenotypes in VHL/Vhlh deficient kidney
tubule cells. ----------------------------------------------------------------------------------------------- 71
8.2.2. Gene expression program in the activated macrophages shows specific EMT-stimulating
capacity ---------------------------------------------------------------------------------------------------- 72
8.2.3. Blockade of CCL18 and TGF-β1 reduces EMT capacity of co-cultured HK-2 cells--- 73
8.2.4. CCL18 and TGF-β1 production by THP-1 macrophages are mediated by IL-6 signaling
-------------------------------------------------------------------------------------------------------------- 74
8.3. Discussion..........................................................................................................................74
Chapter 9. CCL18-expressing macrophages promote tumor growth and metastasis of
ccRCC cells in vivo ------------------------------------------------------------------------------------- 83
9.1. Introduction and objective.................................................................................................83
9.2. Results ...............................................................................................................................83
9.2.1. TAMs are important for metastasis of ccRCC ----------------------------------------------- 83
9.2.2. CCL18-expressing macrophages promote ccRCC tumor growth and metastasis------- 84
9.3. Discussion..........................................................................................................................85
Chapter 10. Conclusions and prospectives -------------------------------------------------------- 95
10.1. Conclusion and discussion...............................................................................................95
10.2. Prospectives.....................................................................................................................96
REFERENCES------------------------------------------------------------------------------------------ 99
Publication list------------------------------------------------------------------------------------------118
參考文獻 1. Rita Fior RZ. Molecular and Cell Biology of Cancer: When cells break the rules and hijack their own planet (learning materials in biosciences). Springer 2019;1st ed. edition.
2. Pecorino L. Molecular biology of cancer: mechanisms, targets, and therapeutics. OxfordUniversity Press 2016; 4th edition.
3. Weinberg RA. The biology of cancer. W W Norton & Company 2013;2nd edition
4. Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D In vitro model (R)evolution: Unveiling tumor-stroma interactions. Trends Cancer 2021;7:249-64
5. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance.
Cell Commun Signal 2020;18:59
6. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008;27:5904-12
7. Germano G, Allavena P, Mantovani A. Cytokines as a key component of cancer-related inflammation. Cytokine 2008;43:374-9
8. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004;4:11-22
9. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Perez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019;120:6-15
10. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140:883-99
11. Greten FR, Grivennikov SI. Inflammation and Cancer: triggers, mechanisms, and consequences. Immunity 2019;51:27-41
12. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008;454:436-44
13. Ruzankina Y, Schoppy DW, Asare A, Clark CE, Vonderheide RH, Brown EJ. Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat Genet 2009;41:1144-9
14. Chouaib S, Messai Y, Couve S, Escudier B, Hasmim M, Noman MZ. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol 2012;3:21
15. Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 2015;12:584-96
16. Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in Cancer: A Historical Overview. Transl Oncol 2020;13:100773
17. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, et al. Epithelialmesenchymal transition in cancer development and its clinical significance. Cancer Sci
2010;101:293-9
18. Suarez-Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 2017;11:805-23
19. Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol 2010;21 Suppl 7:vii89-92
20. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-8
21. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol
2020;21:341-52
22. Yeung KT, Yang J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol 2017;11:28-39
23. Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, et al. EMT Subtype influences epithelial plasticity and mode of cell migration. Dev Cell 2018;45:681-95 e4113
24. Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, et al. Tumor immune microenvironment during epithelial-mesenchymal transition. Clin Cancer Res
2021;27:4669-79
25. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat
Med 2018;24:541-50
26. Vogelzang NJ, Stadler WM. Kidney cancer. Lancet 1998;352:1691-6 27. Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear
cell renal cell carcinoma. Nature 2013;499:43-9
28. Capitanio U, Bensalah K, Bex A, Boorjian SA, Bray F, Coleman J, et al. Epidemiology of renal cell carcinoma. Eur Urol 2019;75:74-84
29. van der Poel HG, Mulders PF, Oosterhof GO, Schaafsma HE, Hendriks JC, Schalken JA, et al. Prognostic value of karyometric and clinical characteristics in renal cell
carcinoma. Quantitative assessment of tumor heterogeneity. Cancer 1993;72:2667-74
30. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893-917
31. Volpe A, Patard JJ. Prognostic factors in renal cell carcinoma. World J Urol 2010;28:319-27
32. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Primers 2017;3:17009
33. Dizman N, Philip EJ, Pal SK. Genomic profiling in renal cell carcinoma. Nat Rev Nephrol 2020;16:435-51
34. Inamura K. Renal Cell Tumors: Understanding their molecular pathological epidemiology and the 2016 WHO classification. Int J Mol Sci 2017;18
35. Moch H, Reuter VE. WHO classification of tumours of the urinary system and male genital organs. International Agency for Research on Cancer; 2016.
36. Hakimi AA, Pham CG, Hsieh JJ. A clear picture of renal cell carcinoma. Nat Genet 2013;45:849-50
37. Beroukhim R, Brunet JP, Di Napoli A, Mertz KD, Seeley A, Pires MM, et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated
and sporadic clear cell carcinoma of the kidney. Cancer Res 2009;69:4674-81
38. De Vivar chevez AR, Finke J, Bukowski R. The role of inflammation in kidney cancer. Advances in Experimental Medicine and Biology 2014;816:197-234
39. Diaz-Montero CM, Rini BI, Finke JH. The immunology of renal cell carcinoma. Nat Rev Nephrol 2020;16:721-35
40. Tan W, Hildebrandt MA, Pu X, Huang M, Lin J, Matin SF, et al. Role of inflammatory related gene expression in clear cell renal cell carcinoma development and clinical
outcomes. J Urol 2011;186:2071-7
41. Bharat B. Aggarwal. Inflammation and Cancer. Advances in Experimental Medicine and Biology. Springer Basel 2014; Volume 816.
42. De Vivar Chevez AR, Finke J, Bukowski R. The role of inflammation in kidney cancer. Adv Exp Med Biol 2014;816:197-234
43. Blankenship C, Naglich JG, Whaley JM, Seizinger B, Kley N. Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene
with tumor suppressor activity. Oncogene 1999;18:1529-35
44. Iliopoulos O, Ohh M, Kaelin WG, Jr. pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad Sci U S A 1998;95:11661-6
45. Schoenfeld A, Davidowitz EJ, Burk RD. A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor
suppressor. Proc Natl Acad Sci U S A 1998;95:8817-22
46. Capitanio U, Montorsi F. Renal cancer. The Lancet 2016;387:894-906114
47. Bui TO, Dao VT, Nguyen VT, Feugeas JP, Pamoukdjian F, Bousquet G. Genomics of clear-cell renal cell carcinoma: A systematic review and meta-analysis. Eur Urol
2022;81:349-61
48. Batavia AA, Schraml P, Moch H. Clear cell renal cell carcinoma with wild-type von Hippel-Lindau gene: a non-existent or new tumour entity? Histopathology 2019;74:60-
7
49. Atkins MB, Tannir NM. Current and emerging therapies for first-line treatment of metastatic clear cell renal cell carcinoma. Cancer Treat Rev 2018;70:127-37
50. Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to systemic therapies in clear cell renal cell carcinoma: Mechanisms and management
strategies. Mol Cancer Ther 2018;17:1355-64
51. Su S, Akbarinejad S, Shahriyari L. Immune classification of clear cell renal cell carcinoma. Sci Rep 2021;11:4338
52. Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019;30:36-50
53. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 2012;72:3125-30
54. Cassetta L, Pollard JW. Tumor-associated macrophages. Curr Biol 2020;30:R246-R8
55. Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015;107:321-30
56. Yamasaki K, Eeden SFV. Lung macrophage phenotypes and functional responses: Role in the pathogenesis of COPD. Int J Mol Sci 2018;19
57. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated
macrophages. Front Immunol 2019;10:1084
58. Yang M, McKay D, Pollard JW, Lewis CE. Diverse functions of macrophages in different tumor microenvironments. Cancer Res 2018;78:5492-503
59. Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012;33:119-26
60. Aras S, Zaidi MR. TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 2017;117:1583-91
61. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 2019;26:78
62. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017
63. Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, et al. An immune atlas of clear cell renal cell carcinoma. Cell 2017;169:736-49 e18
64. Vuong L, Kotecha RR, Voss MH, Hakimi AA. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. Cancer Discov 2019;9:1349-57
65. Lan T, Chen L, Wei X. Inflammatory cytokines in Cancer: Comprehensive understanding and clinical progress in gene therapy. Cells 2021;10
66. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res
2014;2014:149185
67. Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 2011;7:651-8
68. Li Z, Zimmerman KA, Yoder BK. Resident macrophages in cystic kidney disease. Kidney360 2021;2:167-75
69. Lee HW, Choi HJ, Ha SJ, Lee KT, Kwon YG. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim Biophys Acta 2013;1835:170-9115
70. Pritchett TL, Bader HL, Henderson J, Hsu T. Conditional inactivation of the mouse von Hippel-Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory
and fibrotic lesions in the kidney. Oncogene 2015;34:2631-9
71. Hsouna A, Nallamothu G, Kose N, Guinea M, Dammai V, Hsu T. Drosophila von Hippel-Lindau tumor suppressor gene function in epithelial tubule morphogenesis. Mol
Cell Biol 2010;30:3779-94
72. Kuo CY, Lin CH, Hsu T. VHL Inactivation in precancerous kidney cells induces an inflammatory response via ER stress-activated IRE1alpha signaling. Cancer Res 2017;77:3406-16
73. Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, et al. Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF
secretion. Clin Cancer Res 2018;24:5407-21
74. Starr T, Bauler TJ, Malik-Kale P, Steele-Mortimer O. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with
Salmonella Typhimurium. PLoS One 2018;13:e0193601
75. Su S, Liu Q, Chen J, Chen J, Chen F, He C, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis.
Cancer Cell 2014;25:605-20
76. Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ, Oshimori N. Tumorinitiating cells establish an IL-33-TGF-beta niche signaling loop to promote cancer
progression. Science 2020;369
77. Di Franco S, Bianca P, Sardina DS, Turdo A, Gaggianesi M, Veschi V, et al. Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nat
Commun 2021;12:5006
78. Nguyen-Tran HH, Nguyen TN, Chen CY, Hsu T. Endothelial reprograming stimulated by oncostatin M promotes inflammation and tumorigenesis in VHL-deficient kidney
tissue. Cancer Res 2021
79. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141:39-51
80. Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, et al. Highresolution transcriptome of human macrophages. PLoS One 2012;7:e45466
81. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006;177:7303-11
82. Stewart DA, Yang Y, Makowski L, Troester MA. Basal-like breast cancer cells induce phenotypic and genomic changes in macrophages. Mol Cancer Res 2012;10:727-38
83. Heideveld E, Horcas-Lopez M, Lopez-Yrigoyen M, Forrester LM, Cassetta L, Pollard JW. Methods for macrophage differentiation and in vitro generation of human tumor
associated-like macrophages. Methods Enzymol 2020;632:113-31
84. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to
etoposide. BMC Cancer 2015;15:577
85. Orekhov AN, Orekhova VA, Nikiforov NG, Myasoedova VA, Grechko AV, Romanenko EB, et al. Monocyte differentiation and macrophage polarization. Vessel Plus 2019;2019
86. Kong L, Smith W, Hao D. Overview of RAW264.7 for osteoclastogensis study: Phenotype and stimuli. J Cell Mol Med 2019;23:3077-87
87. Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J 2002;16:869-71116
88. Zimmerman KA, Bentley MR, Lever JM, Li Z, Crossman DK, Song CJ, et al. Singlecell RNA sequencing identifies candidate renal resident macrophage gene expression signatures across species. J Am Soc Nephrol 2019;30:767-81
89. Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, et al. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci Rep 2016;6:33123
90. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2002;1:459-68
91. Bohonowych JE, Peng S, Gopal U, Hance MW, Wing SB, Argraves KM, et al. Comparative analysis of novel and conventional Hsp90 inhibitors on HIF activity and
angiogenic potential in clear cell renal cell carcinoma: implications for clinical evaluation. BMC Cancer 2011;11:520
92. Nguyen-Tran HH, Nguyen TN, Chen CY, Hsu T. Endothelial reprogramming stimulated by Oncostatin M promotes inflammation and tumorigenesis in VHL Deficient Kidney Tissue. Cancer Res 2021;81:5060-73
93. Grivennikov S, Karin M. Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 2008;13:7-9
94. Scheller J, Ohnesorge N, Rose-John S. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol 2006;63:321-9
95. Bromberg J, Wang TC. Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell 2009;15:79-80
96. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014;6:a016295
97. Fu Q, Chang Y, An H, Fu H, Zhu Y, Xu L, et al. Prognostic value of interleukin-6 and interleukin-6 receptor in organ-confined clear-cell renal cell carcinoma: a 5-year
conditional cancer-specific survival analysis. Br J Cancer 2015;113:1581-9
98. Wang D, Yang W, Du J, Devalaraja MN, Liang P, Matsumoto K, et al. MGSA/GROmediated melanocyte transformation involves induction of Ras expression. Oncogene 2000;19:4647-59
99. Zhang Z, Chen Y, Jiang Y, Luo Y, Zhang H, Zhan Y. Prognostic and clinicopathological significance of CXCL1 in cancers: a systematic review and meta-analysis. Cancer Biol
Ther 2019;20:1380-8
100. Miyake M, Hori S, Morizawa Y, Tatsumi Y, Nakai Y, Anai S, et al. CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated
fibroblasts promotes tumor progression in human bladder cancer. Neoplasia 2016;18:636-46
101. Lee FD. The role of interleukin-6 in development. Dev Biol 1992;151:331-8
102. Withy RM, Rafield LF, Beck AK, Hoppe H, Williams N, McPherson JM. Growth factors produced by human embryonic kidney cells that influence megakaryopoiesis include erythropoietin, interleukin 6, and transforming growth factor-beta. J Cell Physiol 1992;153:362-72
103. Choy EH, De Benedetti F, Takeuchi T, Hashizume M, John MR, Kishimoto T. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol 2020;16:335-45
104. Johnson DE, O′Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 2018;15:234-48
105. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74
106. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 2010;11:174-83
107. Moreno SG. Depleting macrophages in vivo with Clodronate-liposomes. Methods Mol Biol 2018;1784:259-62117
108. Weisser SB, van Rooijen N, Sly LM. Depletion and reconstitution of macrophages in mice. J Vis Exp 2012:4105
109. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019;20:69-84
110. Stuelten CH, Zhang YE. Transforming growth factor-beta: an agent of change in the tumor microenvironment. Front Cell Dev Biol 2021;9:764727
111. Massague J. TGFbeta in Cancer. Cell 2008;134:215-30
112. Ge Z, Ding S. The crosstalk between tumor-associated macrophages (TAMs) and tumor cells and the corresponding targeted therapy. Front Oncol 2020;10:590941
113. Korbecki J, Olbromski M, Dziegiel P. CCL18 in the progression of cancer. Int J Mol Sci 2020;21
114. Lin Z, Li W, Zhang H, Wu W, Peng Y, Zeng Y, et al. CCL18/PITPNM3 enhances migration, invasion, and EMT through the NF-kappaB signaling pathway in
hepatocellular carcinoma. Tumour Biol 2016;37:3461-8
115. Jiang X, Wang J, Chen X, Hong Y, Wu T, Chen X, et al. Elevated autocrine chemokine ligand 18 expression promotes oral cancer cell growth and invasion via Akt activation.
Oncotarget 2016;7:16262-72
116. Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, et al. CCL18 from Tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011;19:814-6
117. Ye H, Zhou Q, Zheng S, Li G, Lin Q, Wei L, et al. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in
pancreatic ductal adenocarcinoma. Cell Death Dis 2018;9:453
118. Chen G, Liang YX, Zhu JG, Fu X, Chen YF, Mo RJ, et al. CC chemokine ligand 18 correlates with malignant progression of prostate cancer. Biomed Res Int 2014;2014:230183
119. She L, Qin Y, Wang J, Liu C, Zhu G, Li G, et al. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer
Cell Int 2018;18:120
120. Lin L, Chen YS, Yao YD, Chen JQ, Chen JN, Huang SY, et al. CCL18 from tumorassociated macrophages promotes angiogenesis in breast cancer. Oncotarget
2015;6:34758-73
121. Zhang B, Yin C, Li H, Shi L, Liu N, Sun Y, et al. Nir1 promotes invasion of breast cancer cells by binding to chemokine (C-C motif) ligand 18 through the
PI3K/Akt/GSK3beta/Snail signalling pathway. Eur J Cancer 2013;49:3900-13
122. Liu X, Xu X, Deng W, Huang M, Wu Y, Zhou Z, et al. CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells. Mol Med Rep 2019;19:1678-86
123. Thyavihally YB, Mahantshetty U, Chamarajanagar RS, Raibhattanavar SG, Tongaonkar HB. Management of renal cell carcinoma with solitary metastasis. World J Surg Oncol 2005;3:48
124. Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun
2017;8:1769
125. van der Mijn JC, Fu L, Khani F, Zhang T, Molina AM, Barbieri CE, et al. Combined metabolomics and genome-wide transcriptomics analyses show multiple HIF1alphainduced changes in lipid metabolism in early stage clear cell renal cell carcinoma. Transl Oncol 2020;13:177-85
126. Zhang CJ, Zhu N, Wang YX, Liu LP, Zhao TJ, Wu HT, et al. Celastrol attenuates lipid accumulation and stemness of clear cell renal cell carcinoma via CAV-1/LOX-1 pathway. Front Pharmacol 2021;12:658092118
127. Deng CF, Zhu N, Zhao TJ, Li HF, Gu J, Liao DF, et al. Involvement of LDL and oxLDL in cancer development and Its therapeutical potential. Front Oncol 2022;12:803473
128. Peck B, Schulze A. Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer 2019;5:693-703
129. Menard JA, Christianson HC, Kucharzewska P, Bourseau-Guilmain E, Svensson KJ, Lindqvist E, et al. Metastasis stimulation by hypoxia and acidosis-induced extracellular
lipid uptake is mediated by proteoglycan-dependent endocytosis. Cancer Res 2016;76:4828-40
130. Liu Z, Gao Z, Li B, Li J, Ou Y, Yu X, et al. Lipid-associated macrophages in the tumoradipose microenvironment facilitate breast cancer progression. OncoImmunology 2022;11
131. Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H, et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell
2019;178:686-98 e14
132. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res 2017;27:352-72
133. Cho W, Kang JL, Park YM. Corticotropin-releasing hormone (CRH) promotes macrophage foam cell formation via reduced expression of ATP binding cassette transporter-1 (ABCA1). PLoS One 2015;10:e0130587
134. He J, Zhang G, Pang Q, Yu C, Xiong J, Zhu J, et al. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition.
FEBS J 2017;284:1324-37
135. Pi S, Mao L, Chen J, Shi H, Liu Y, Guo X, et al. The P2RY12 receptor promotes VSMCderived foam cell formation by inhibiting autophagy in advanced atherosclerosis.
Autophagy 2021;17:980-1000
136. Guerrini V, Gennaro ML. Foam Cells: One Size Doesn′t Fit All. Trends Immunol 2019;40:1163-79
137. Lee-Rueckert M, Lappalainen J, Kovanen PT, Escola-Gil JC. Lipid-laden macrophages and inflammation in atherosclerosis and cancer: An integrative view. Front Cardiovasc
Med 2022;9:777822
指導教授 徐沺(Tien Hsu) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明