博碩士論文 105887601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.144.2.213
姓名 楊火龍(Albert Jackson Yang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 微生物組中的細菌作為治療人類疾病的生物療法
(Bacteria in the microbiome as biotherapeutics for treatments of human diseases)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症
★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria
★ 基於PEG的益生元影響皮膚細菌和皮膚電的發酵★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制
★ 基於PEG的益生元對痤瘡痤瘡桿菌的表皮葡萄球菌發酵和電的研究★ 設計開發全氟碳複合奈米藥物載體對體表微生物多效抑菌功能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在青春痘痤瘡治療上,若使用抗生素可能會同時破壞對人體有益的微生物,這些微生物能有效對抗痤瘡丙酸桿菌(C. acnes),其是一種與炎症相關之尋常性痤瘡的細菌,但直接利用活表皮葡萄球菌(S. epidermidis)應用在開放性痤瘡病變部位的益生菌治療可能會導致血液感染。於是,我們製造了聚碸微管陣列膜(PSF MTAM)來封裝益生菌表皮葡萄球菌,使得表皮葡萄球菌在 PSF MTAM 中增強了對甘油的發酵活性。為了模擬肉芽腫類型的痤瘡炎症性尋常痤瘡,將小鼠的耳朵皮內注射痤瘡丙酸桿菌以誘導巨噬細胞炎症蛋白-2 (MIP-2) 的分泌,這是對應人類白細胞介素 (IL)-8 的小鼠分泌物質。在擁有甘油的環境下,注射痤瘡丙酸桿菌的小鼠耳朵被有或無表皮葡萄球菌的PSF MTAM 覆蓋著,結果顯示,同時擁有表皮葡萄球菌包裹的 PSF MTAM 並加入甘油應用於注射痤瘡丙酸桿菌的小鼠耳朵,大大減少了痤瘡丙酸桿菌的生長和 MIP-2 的產生。此外,沒有表皮葡萄球菌從 PSF MTAM 洩漏到小鼠皮膚中。藉此, PSF MTAM可作為益生菌痤瘡貼劑。
壓力是抑制毛髮生長的主要因素之一。
在這裡,我們研究了聲應力對炎症性皮膚中皮膚炎症和毛髮生長的誘導的影響。暴露於超聲波驅鼠器產生的聲波壓力下的小鼠,顯著上調磷酸二酯酶 4B (PDE4B) 的 mRNA 表達,增強了 4-羥基-2-壬烯醛 (4-HNE) 的產生,其是活性氧 (ROS)及促炎性白細胞介素 (IL)-6 細胞因子的蛋白質指示劑,並刺激巨噬細胞在皮膚中大量積累。聲壓引起的炎症性皮膚極大地阻礙了毛髮的生長。用重組 IL-6 的巨噬細胞治療增加了磷酸化的布魯頓酪氨酸激酶 (p-BTK)。在 PDE4B 基因剔除的小鼠中,由聲壓引發上升的4-HNE 和 IL-6亦受到抑制。頭狀葡萄球菌 (S. capitis) EHH 菌株透過甘油介導發酵,可有效抑制聲壓應力對抑制毛髮生長的炎症作用。使用 siRNA 下調的實驗驗證了游離脂肪酸受體 2 (FFAR2) 得以調控頭狀葡萄球菌 EHH 對聲壓的益生菌效果。該研究闡明了由聲壓引起的 PDE4B/4-HNE/IL-6 的信號通路,並展示了一種益生菌皮膚方法來減輕聲壓引起的皮膚炎症和延緩毛髮生長。
膜糖蛋白是嚴重急性呼吸系統綜合症冠狀病毒 2 (SARS-CoV-2) 中含量最豐富的蛋白質,但其在 2019 冠狀病毒病 (COVID-19) 中的作用尚未完全了解檢視。與接種綠色熒光蛋白 (GFP) 的小鼠相比,鼻內接種膜糖蛋白的小鼠在支氣管肺泡灌洗液 (BALF) 中顯著增加了細胞因子風暴標誌的白細胞介素 (IL)-6。在磷酸二酯酶 4 (PDE4B) 剔除的小鼠中,透過膜糖蛋白誘導的高度 IL-6 顯著降低,表明 PDE4B 在 IL-6 信號傳導中的重要作用。由鼠李糖乳桿菌 (L. rhamnosus) EH8 菌株的菌絲體發酵產生的丁酸,可下調巨噬細胞中 PDE4B 的表達和 IL-6 的分泌。用菌絲體餵養小鼠不只增加了共生鼠李糖乳桿菌的相對豐度,兩周後亦可顯著降低膜糖蛋白誘導的 PDE4B 表達和 IL-6 分泌。在用 GLPG-0974(游離脂肪酸受體 2 (Ffar2) 的拮抗劑)治療的小鼠中,鼠李糖乳桿菌加菌絲體對膜糖蛋白的益生菌活性被消除。在腸-肺軸中激活 Ffar2 以下調 PDE4B-IL-6 信號傳導可能作為開發模式的目標,包括用於治療 COVID-19 細胞因子風暴的益生菌。
摘要(英) Antibiotics without selectivity for acne treatment may destroy the beneficial microbes in the human microbiome that helps to fight Cutibacterium acnes (C. acnes), a bacterium associated with inflammatory acne vulgaris. Probiotic treatment by direct application of live Staphylococcus epidermidis (S. epidermidis) onto the open acne lesions may run the risk of bloodstream infections. Here, we fabricated the polysulfone microtube array membranes (PSF MTAM) to encapsulate probiotic S. epidermidis. We demonstrate that the application of the encapsulation of S. epidermidis in PSF MTAM enhanced the glycerol fermentation activities of S. epidermidis. To mimic the granulomatous type of acne inflammatory acne vulgaris, the ears of mice were injected intradermally with C. acnes to induce the secretion of macrophage inflammatory protein-2 (MIP-2), a murine counterpart of human interleukin (IL)-8. The C. acnes-injected mouse ears were covered with a PSF MTAM encapsulated with or without S. epidermidis in the presence of glycerol. The application of S. epidermidis-encapsulated PSF MTAM plus glycerol onto the C. acnes-injected mouse ears considerably reduced the growth of C. acnes and the production of MIP-2. Furthermore, no S. epidermidis leaked from PSF MTAM into mouse skin. The S. epidermidis-encapsulated PSF MTAM functions as a probiotic acne patch.
Stress is one of the major causal factors in the inhibition of hair growth. Here, we investigate the effect of sonic stress on the induction of skin inflammation and hair growth in inflammatory skin. Mice exposed to sonic stress created by ultrasonic rodent repellants significantly up-regulated mRNA expression of phosphodiesterase 4B (PDE4B), enhanced the production of 4-hydroxy-2-nonenals (4-HNE), a marker of reactive oxygen species (ROS) and a pro-inflammatory interleukin (IL)-6 cytokine, and stimulated substantial accumulation of macrophages in skin. The inflammatory skin elicited by sonic stress considerably impeded hair growth. Treatment of macrophage cells with recombinant IL-6 increased phosphorylated Bruton′s tyrosine kinase (p-BTK). The elevated 4-HNE and IL-6 as well as the restricted hair growth caused by sonic stress were subdued in PDE4B knockout mice. A probiotic Staphylococcus capitis (S. capitis) EHH strain-mediated glycerol fermentation to effectively suppress the inflammatory effect of sonic stress on the inhibition of hair growth. Experiments using siRNA knockdown validated that free fatty acid receptor 2 (FFAR2) mediated probiotic action of S. capitis EHH against sonic stress. The study elucidated a signaling pathway of PDE4B/4-HNE/IL-6 provoked by sonic stress and demonstrated a probiotic skin approach to mitigate the sonic stress-induced skin inflammation and retarded hair growth.
Membrane glycoprotein is the most abundant protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but its role in coronavirus disease 2019 (COVID-19) has not been fully characterized. The mice were intranasally inoculated with membrane glycoprotein substantially increased the interleukin (IL)-6, a hallmark of the cytokine storm, in bronchoalveolar lavage fluid (BALF), compared to mice inoculated with green fluorescent protein (GFP). The high level of IL-6 induced by membrane glycoprotein was significantly diminished in phosphodiesterase 4 (PDE4B) knockout mice, demonstrating the essential role of PDE4B in IL-6 signaling. Mycelium fermentation of Lactobacillus rhamnosus (L. rhamnosus) EH8 strain yielded butyric acid, which can down-regulate the PDE4B expression and IL-6 secretion in macrophages. Feeding mice with mycelia increased the relative abundance of commensal L. rhamnosus. Two-week supplementation of mice with L. rhamnosus plus mycelia considerably decreased membrane glycoprotein-induced PDE4B expression and IL-6 secretion. The probiotic activity of L. rhamnosus plus mycelia against membrane glycoprotein was abolished in mice treated with GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Activation of Ffar2 in the gut-lung axis for down-regulation of the PDE4B-IL-6 signaling may provide targets for developing modalities, including probiotics for treating the cytokine storm in COVID-19.
論文目次 Table of Contents
CHINESE ABSTRACT i
ABSTRACT iii
ACKNOWLEDGEMENTS v
LIST OF FIGURES ix
LIST OF TABLES xiv
CHAPTER I INTRODUCTION 1
1.1. Human Skin and its Microorganism 1
1.2. Probiotic and Prebiotic Human Skin 2
1.3. Human gut prebiotic from mushroom 3
1.4. Short-chain fatty acids (SCFAs) 4
1.5. Coronavirus disease 2019 (Covid-19) 5
1.7. Gut microbiota treatment in COVID-19 pneumonia 6
CHAPTER II A MICROTUBE ARRAY MEMBRANE (MTAM) ENCAPSULATED LIVE FERMENTING STAPHYLOCOCCUS EPIDERMIDIS AS A SKIN PROBIOTIC PATCH AGAINST CUTIBACTERIUM ACNES 8
2.1. Introduction 8
2.2. Materials and methods 10
2.2.1. Culture of Microorganisms 10
2.2.2. Fermentation of Bacteria 11
2.2.3. Fermentation of S. epidermidis in PSF MTAM Against C. acnes In Vivo 11
2.2.4. SEM 12
2.2.5. Bacterial Loads in Mouse Ears 12
2.2.6. ELISA 13
2.2.7. Detection of S. epidermidis Leaking from PSF MTAMs 13
2.2.8. Statistics 14
2.3. Result 14
2.3.1. The S. epidermidis-encapsulated PSF MTAM 14
2.3.2. Glycerol Fermentation of S. epidermidis in PSF MTAM 15
2.3.3. In Vivo Inhibition of C. acnes Growth and Inflammation by S. epidermidis Fermentation 17
2.3.4. Detection of Bacterial Leaking from PSF MTAM 21
2.4. Discussion 22
CHAPTER III THE SIGNALING OF PED4B/4-HNE/IL-6 IN SONIC STRESS-INDUCED INHIBITION OF HAIR GROWTH WAS SUPPRESSED BY PROBIOTIC STAPHYLOCOCCUS CAPITIS 27
3.1. Introduction 27
3.2. Materials and methods 29
3.2.1. Ethics statement 29
3.2.2. Anagen induction 29
3.2.3. Sonic stress 30
3.2.4. Macrophage cell culture 30
3.2.5. Bacterial culture and fermentation 31
3.2.6. Western blotting 31
3.2.7. Skin tissue immunostaining 32
3.2.8. Reverse transcription-polymerase chain reaction (RT-PCR) 33
3.2.9. Small interfering RNA (siRNA)-mediated gene knockdown of FFAR2 34
3.2.10. Statistical analysis 34
3.3. Results 34
3.3.1. Sonic stress up-regulated PED4B, 4-HNE and IL-6 and inhibited hair growth 34
3.3.2. Sonic stress-induced macrophage accumulation in skin 37
3.3.3. PDE4B was essential in blocking sonic stress-induced inhibition of hair growth 39
3.3.4. S. capitis EHH fermentation abrogated sonic stress-induced inhibition of hair growth 41
3.3.5. The probiotic effect of S. capitis EHH was subdued by FFAR2 knockdown 44
3.4. Discussion 46
CHAPTER IV- GUT PROBIOTIC LACTOBACILLUS RHAMNOSUS ATTENUATES PDE4B-MEDIATED INTERLEUKIN-6 INDUCED BY SARS-COV-2 MEMBRANE GLYCOPROTEIN 50
4.1. Introduction 50
4.2. Material and method 52
4.2.1. Ethics statement 52
4.2.2. Cloning, expression, and purification of SARS-CoV-2 membrane glycoprotein 53
4.2.3. Detection of IL-6 in BALF 53
4.2.4. Real-time polymerase chain reaction (RT PCR) 53
4.2.5. Mycelium preparation 54
4.2.6. Mycelium fermentation of L. rhamnosus EH8 55
4.2.7. Quantification of L. rhamnosus 55
4.2.8. Cell culture 56
4.2.9. Detection of butyric acid by high performance liquid chromatography (HPLC) 56
4.2.10. Inhibition of Ffar2 57
4.2.11. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay 57
4.2.12. Statistical analysis 57
4.3. Results 58
4.3.1. PDE4B is essential for induction of IL-6 by SARS-CoV-2 membrane glycoprotein 58
4.3.2. Mycelium fermentation of L. rhamnosus EH8 mitigates SARS-CoV-2 membrane glycoprotein-induced IL-6 59
4.3.3. Butyric acid was produced by mycelium fermentation of L. rhamnosus EH8 and reduced IL-6 secretion and PDE4B expression in macrophages 62
4.3.4. Ffar2 mediates the effect of mycelium fermentation of L. rhamnosus EH8 on the reduction of PDE4B and IL-6 63
4.4. Discussion 65
CHAPTER V CONCLUSIONS AND OUTLOOKS 71
BIBLIOGRAPHY 73
APPENDIX 1 LIST OF PUBLICATION 84
參考文獻 1. Belkaid, Y. and J.A. Segre, Dialogue between skin microbiota and immunity. Science, 2014. 346(6212): p. 954-959.
2. Grice, E.A., The intersection of microbiome and host at the skin interface: genomic-and metagenomic-based insights. Genome research, 2015. 25(10): p. 1514-1520.
3. Scharschmidt, T.C. and M.A. Fischbach, What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discovery Today: Disease Mechanisms, 2013. 10(3-4): p. e83-e89.
4. Chen, Y.E. and H. Tsao, The skin microbiome: current perspectives and future challenges. Journal of the American Academy of Dermatology, 2013. 69(1): p. 143-155. e3.
5. Byrd, A.L., Y. Belkaid, and J.A. Segre, The human skin microbiome. Nature Reviews Microbiology, 2018. 16(3): p. 143.
6. Grice, E.A., et al., A diversity profile of the human skin microbiota. Genome research, 2008. 18(7): p. 1043-1050.
7. Kong, H.H., Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends in molecular medicine, 2011. 17(6): p. 320-328.
8. Grice, E.A., et al., Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proceedings of the National Academy of Sciences, 2010. 107(33): p. 14799-14804.
9. Gao, Z., et al., Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PloS one, 2008. 3(7): p. e2719.
10. Frank, D.N., et al., Microbial diversity in chronic open wounds. Wound repair and regeneration, 2009. 17(2): p. 163-172.
11. Dekio, I., et al., Characterization of skin microbiota in patients with atopic dermatitis and in normal subjects using 16S rRNA gene-based comprehensive analysis. Journal of Medical Microbiology, 2007. 56(12): p. 1675-1683.
12. Bek-Thomsen, M., H. Lomholt, and M. Kilian, Acne is not associated with yet-uncultured bacteria. Journal of clinical microbiology, 2008. 46(10): p. 3355-3360.
13. Holland, K., et al., Propionibacterium acnes and acne. Dermatology, 1998. 196(1): p. 67.
14. Scholz-Ahrens, K.E., et al., Effects of probiotics, prebiotics, and synbiotics on mineral metabolism in ovariectomized rats—impact of bacterial mass, intestinal absorptive area and reduction of bone turn-over. Nfs Journal, 2016. 3: p. 41-50.
15. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology, 2014. 98(1): p. 411-424.
16. Keshari, S., et al., Butyric acid from probiotic staphylococcus epidermidis in the skin microbiome down-regulates the ultraviolet-induced pro-inflammatory IL-6 cytokine via short-chain fatty acid receptor. International journal of molecular sciences, 2019. 20(18): p. 4477.
17. Singdevsachan, S.K., et al., Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioactive carbohydrates and dietary fibre, 2016. 7(1): p. 1-14.
18. Synytsya, A., et al., Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate polymers, 2009. 76(4): p. 548-556.
19. Bobek, P. and S. Galbavy, Effect of pleuran (beta-glucan from Pleurotus ostreatus) on the antioxidant status of the organism and on dimethylhydrazine-induced precancerous lesions in rat colon. British journal of biomedical science, 2001. 58(3): p. 164.
20. Pedneault, K., et al., Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var.‘citrino-pileatus’ grown at different temperatures. mycological research, 2007. 111(10): p. 1228-1234.
21. Ushijima, T., M. Takahashi, and Y. Ozaki, Acetic, propionic, and oleic acid as the possible factors influencing the predominant residence of some species of Propionibacterium and coagulase-negative Staphylococcus on normal human skin. Canadian journal of microbiology, 1984. 30(5): p. 647-652.
22. Shu, M., et al., Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PloS one, 2013. 8(2): p. e55380.
23. den Besten, G., et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of lipid research, 2013. 54(9): p. 2325-2340.
24. Iván, J., et al., The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem cells and development, 2017. 26(23): p. 1724-1733.
25. Ulven, T., Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Frontiers in endocrinology, 2012. 3: p. 111.
26. Jocken, J.W., et al., Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Frontiers in endocrinology, 2018. 8: p. 372.
27. Hague, A., A.J. Butt, and C. Paraskeva, The role of butyrate in human colonic epithelial cells: an energy source or inducer of differentiation and apoptosis? Proceedings of the Nutrition society, 1996. 55(3): p. 937-943.
28. Chan, J.F.-W., et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The lancet, 2020. 395(10223): p. 514-523.
29. Liu, B., et al., Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? Journal of autoimmunity, 2020: p. 102452.
30. Yuen, K.-S., et al., SARS-CoV-2 and COVID-19: The most important research questions. Cell & bioscience, 2020. 10(1): p. 1-5.
31. Dhar, D. and A. Mohanty, Gut microbiota and Covid-19-possible link and implications. Virus research, 2020: p. 198018.
32. Song, P., et al., Cytokine storm induced by SARS-CoV-2. Clinica chimica acta, 2020.
33. Liu, T., et al., The potential role of IL-6 in monitoring coronavirus disease 2019. Available at SSRN 3548761, 2020.
34. Zhang, X., et al., Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-κB. Virology, 2007. 365(2): p. 324-335.
35. Dalamaga, M., I. Karampela, and C.S. Mantzoros, Commentary: Phosphodiesterase 4 inhibitors as potential adjunct treatment targeting the cytokine storm in COVID-19. Metabolism, 2020. 109: p. 154282.
36. Mostafa, T., Could oral PDE-5 inhibitors have a potential adjuvant role in combating COVID-19 infection? Sexual medicine reviews, 2020.
37. Shin, M.D., et al., COVID-19 vaccine development and a potential nanomaterial path forward. Nature nanotechnology, 2020. 15(8): p. 646-655.
38. Chai, W., et al., Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Archives of virology, 2013. 158(4): p. 799-807.
39. Dickson, R.P., The microbiome and critical illness. The Lancet Respiratory Medicine, 2016. 4(1): p. 59-72.
40. Dumas, A., et al., The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cellular microbiology, 2018. 20(12): p. e12966.
41. Jia, W., G. Xie, and W. Jia, Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature reviews Gastroenterology & hepatology, 2018. 15(2): p. 111.
42. Rooks, M.G. and W.S. Garrett, Gut microbiota, metabolites and host immunity. Nature reviews immunology, 2016. 16(6): p. 341-352.
43. Satokari, R., et al., Bifidobacterium and Lactobacillus DNA in the human placenta. Letters in applied microbiology, 2009. 48(1): p. 8-12.
44. Akour, A., Probiotics and COVID‐19: is there any link? Letters in applied microbiology, 2020. 71(3): p. 229-234.
45. Schmitter, T., et al., Ex vivo anti-inflammatory effects of probiotics for periodontal health. Journal of oral microbiology, 2018. 10(1): p. 1502027.
46. Oh, N.S., et al., Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PloS one, 2018. 13(2): p. e0192021.
47. Kim, S.O., et al., G‐CSF‐mediated inhibition of JNK is a key mechanism for Lactobacillus rhamnosus‐induced suppression of TNF production in macrophages. Cellular microbiology, 2006. 8(12): p. 1958-1971.
48. Ayyanna, R., D. Ankaiah, and V. Arul, Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar albino rats. Frontiers in microbiology, 2018. 9: p. 3063.
49. Grice, E.A. and J.A. Segre, The skin microbiome. Nature Reviews Microbiology, 2011. 9(4): p. 244.
50. Bojar, R.A. and K.T. Holland, Acne and Propionibacterium acnes. Clinics in dermatology, 2004. 22(5): p. 375-379.
51. Liu, J., et al., The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin. The ISME journal, 2015. 9(9): p. 2078.
52. Katsambas, A.D., C. Stefanaki, and W.J. Cunliffe, Guidelines for treating acne. Clinics in dermatology, 2004. 22(5): p. 439-444.
53. MAYS, R., et al., New antibiotic therapies for acne and rosacea. Dermatologic therapy, 2012. 25(1): p. 23-37.
54. Zaenglein, A.L., et al., Guidelines of care for the management of acne vulgaris. Journal of the American Academy of Dermatology, 2016. 74(5): p. 945-973. e33.
55. Hull, P.R. and C. D’Arcy, Isotretinoin use and subsequent depression and suicide. American journal of clinical dermatology, 2003. 4(7): p. 493-505.
56. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology, 2014. 98(1): p. 411-424.
57. Wang, Y., et al., A Co-Drug of Butyric Acid Derived from Fermentation Metabolites of the Human Skin Microbiome Stimulates Adipogenic Differentiation of Adipose-Derived Stem Cells: Implications in Tissue Augmentation. Journal of Investigative Dermatology, 2017. 137(1): p. 46-56.
58. Christensen, G.J., et al., Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC genomics, 2016. 17(1): p. 152.
59. Rajiv, P., et al., Staphylococcus epidermidis in human skin microbiome associated with acne: a cause of disease or defence? Research Journal of Biotechnology, 2013. 8(12): p. 78-82.
60. Wang, Y., et al., A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis fermentation against Propionibacterium acnes. International journal of molecular sciences, 2016. 17(11): p. 1870.
61. Frenot, A. and I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Current opinion in colloid & interface science, 2003. 8(1): p. 64-75.
62. Wendorff, J.H., S. Agarwal, and A. Greiner, Electrospinning: materials, processing, and applications. 2012: John Wiley & Sons.
63. Jang, J.-S., et al., Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess and biosystems engineering, 2012. 35(1-2): p. 11-18.
64. Yang, J.C., et al., Formation of Highly Aligned, Single‐Layered, Hollow Fibrous Assemblies and the Fabrication of Large Pieces of PLLA Membranes. Macromolecular Materials and Engineering, 2012. 297(2): p. 115-122.
65. Chen, C.-C., et al., Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane. Process Biochemistry, 2015. 50(10): p. 1509-1515.
66. Chew, C., C. Wu, and C. Chen, A novel electrospun Microtube Array Membrane (MTAM) based low cost conceptual tubular Microbial Fuel Cell (MFC). European Polymer Journal, 2016. 83: p. 138-147.
67. Mastronardi, C.C. and S. Ramírez-Arcos, Quantitative PCR for detection and discrimination of the bloodborne pathogen Staphylococcus epidermidis in platelet preparations using divIVA and icaA as target genes. Canadian journal of microbiology, 2007. 53(11): p. 1222-1231.
68. Hardikar, A.A., R.J. Farr, and M.V. Joglekar, Circulating microRNAs: understanding the limits for quantitative measurement by real-time PCR. Journal of the American Heart Association, 2014. 3(1): p. e000792.
69. Frank, D.N., et al., The human nasal microbiota and Staphylococcus aureus carriage. PloS one, 2010. 5(5): p. e10598.
70. Ji, G., R. Beavis, and R.P. Novick, Bacterial interference caused by autoinducing peptide variants. Science, 1997. 276(5321): p. 2027-2030.
71. Nicoll, T. and M. Jensen, Staphylococcosis of turkeys. 5. Large-scale control programs using bacterial interference. Avian diseases, 1987: p. 85-88.
72. Wei, W., et al., Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. Bmc Genomics, 2006. 7(1): p. 112.
73. Whitehead, S., R. Leavitt, and M. Jensen, Staphylococcosis of turkeys. 6. Development of penicillin resistance in an interfering strain of Staphylococcus epidermidis. Avian diseases, 1993: p. 536-541.
74. Wilkinson, D. and M. Jensen, Staphylococcosis of turkeys. 4. Characterization of a bacteriocin produced by an interfering Staphylococcus. Avian diseases, 1987: p. 80-84.
75. Dimarzio, L., et al., Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. International journal of immunopathology and pharmacology, 2008. 21(1): p. 137-143.
76. Gueniche, A., et al., Lactobacillus paracasei CNCM I-2116 (ST11) inhibits substance P-induced skin inflammation and accelerates skin barrier function recovery in vitro. European journal of dermatology, 2010. 20(6): p. 731-737.
77. Kourkoutas, Y., et al., Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 2004. 21(4): p. 377-397.
78. Lee, K.H., et al., Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource technology, 2011. 102(17): p. 8191-8198.
79. Chandel, A.K., et al., Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresource technology, 2009. 100(8): p. 2404-2410.
80. Eiadpum, A., S. Limtong, and M. Phisalaphong, High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae. Journal of bioscience and bioengineering, 2012. 114(3): p. 325-329.
81. Fluhr, J., R. Darlenski, and C. Surber, Glycerol and the skin: holistic approach to its origin and functions. British Journal of Dermatology, 2008. 159(1): p. 23-34.
82. Yoneya, T. and Y. Nishijima, Determination of free glycerol on human skin surface. Biological Mass Spectrometry, 1979. 6(5): p. 191-193.
83. Ricke, S., Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 2003. 82(4): p. 632-639.
84. Kligman, A.M., An overview of acne. Journal of Investigative Dermatology, 1974. 62(3): p. 268-287.
85. Liu, P.-F., et al., Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine, 2011. 29(17): p. 3230-3238.
86. Valanne, S., et al., CAMP factor homologues in Propionibacterium acnes: a new protein family differentially expressed by types I and II. Microbiology, 2005. 151(5): p. 1369-1379.
87. Wang, Y., et al., The anti-inflammatory activities of Propionibacterium acnes CAMP factor-targeted acne vaccines. Journal of Investigative Dermatology, 2018. 138(11): p. 2355-2364.
88. Burtenshaw, J., The mechanism of self-disinfection of the human skin and its appendages. Epidemiology & Infection, 1942. 42(2): p. 184-210.
89. Garland, S., Short chain fatty acids may elicit an innate immune response from preadipocytes: a potential link between bacterial infection and inflammatory diseases. Medical hypotheses, 2011. 76(6): p. 881-883.
90. Schröder, O., J. Opritz, and J. Stein, Substrate and inhibitor specificity of butyrate uptake in apical membrane vesicles of the rat distal colon. Digestion, 2000. 62(2-3): p. 152-158.
91. Stein, J., M. Zores, and O. Schröder, Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism. European journal of nutrition, 2000. 39(3): p. 121-125.
92. Hobdy, E. and J. Murren, AN-9 (Titan). Current opinion in investigational drugs (London, England: 2000), 2004. 5(6): p. 628-634.
93. Mondragón, M., et al., Luminescent polylactic acid and polysulfone electrospun fibers containing europium (III) complexes. European Polymer Journal, 2016. 80: p. 126-133.
94. Berins, M., Plastics engineering handbook of the society of the plastics industry. 1991: Springer Science & Business Media.
95. Brydson, J.A., Plastics materials. 1999: Elsevier.
96. Harper, C.A., Modern Plastics Handbook: Handbook. 2000: McGraw-Hill Professional.
97. Yu, X., et al., Robust poly (lactic acid) membranes improved by polysulfone-g-poly (lactic acid) copolymers for hemodialysis. RSC Advances, 2015. 5(95): p. 78306-78314.
98. Crompton, T.R., Physical testing of plastics. 2012: Smithers Rapra.
99. Krause, K. and K. Foitzik. Biology of the hair follicle: the basics. in Seminars in cutaneous medicine and surgery. 2006.
100. Rajendrasingh, J., Role of non-androgenic factors in hair loss and hair regrowth. J Cosmo Trichol, 2017. 3(2): p. 118.
101. Hadshiew, I.M., et al., Burden of hair loss: stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. Journal of investigative dermatology, 2004. 123(3): p. 455-457.
102. Liu, N., et al., Chronic restraint stress inhibits hair growth via substance P mediated by reactive oxygen species in mice. PloS one, 2013. 8(4): p. e61574.
103. Chancellor-Freeland, C., et al., Substance P and stress-induced changes in macrophages. Annals of the New York Academy of Sciences, 1995. 771: p. 472-484.
104. Chen, Y. and J. Lyga, Brain-skin connection: stress, inflammation and skin aging. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy), 2014. 13(3): p. 177-190.
105. Bickers, D.R. and M. Athar, Oxidative stress in the pathogenesis of skin disease. Journal of Investigative Dermatology, 2006. 126(12): p. 2565-2575.
106. Kohen, R., Skin antioxidants: their role in aging and in oxidative stress—new approaches for their evaluation. Biomedicine & pharmacotherapy, 1999. 53(4): p. 181-192.
107. Linley, J.E., et al., Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proceedings of the National Academy of Sciences, 2012. 109(24): p. E1578-E1586.
108. Liu, J., et al., Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. The FASEB Journal, 1996. 10(13): p. 1532-1538.
109. Zafir, A. and N. Banu, Induction of oxidative stress by restraint stress and corticosterone treatments in rats. 2009.
110. Stucchi, A.F., et al., NK-1 antagonist reduces colonic inflammation and oxidative stress in dextran sulfate-induced colitis in rats. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2000. 279(6): p. G1298-G1306.
111. Yin, H., L. Xu, and N.A. Porter, Free radical lipid peroxidation: mechanisms and analysis. Chemical reviews, 2011. 111(10): p. 5944-5972.
112. Zhong, H. and H. Yin, Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox biology, 2015. 4: p. 193-199.
113. Alvarez, P., P.G. Green, and J.D. Levine, Stress in the adult rat exacerbates muscle pain induced by early-life stress. Biological psychiatry, 2013. 74(9): p. 688-695.
114. Kwack, M.H., et al., Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice. Journal of Investigative Dermatology, 2012. 132(1): p. 43-49.
115. Ryu, Y.S., et al., Particulate matter induces inflammatory cytokine production via activation of NFκB by TLR5-NOX4-ROS signaling in human skin keratinocyte and mouse skin. Redox biology, 2019. 21: p. 101080.
116. Arck, P.C., et al., Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. The American journal of pathology, 2003. 162(3): p. 803-814.
117. Blumeyer, A., et al., Evidence‐based (S3) guideline for the treatment of androgenetic alopecia in women and in men. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 2011. 9: p. S1-S57.
118. Wolff, H., T.W. Fischer, and U. Blume-Peytavi, The diagnosis and treatment of hair and scalp diseases. Deutsches Ärzteblatt International, 2016. 113(21): p. 377.
119. Yang, J.-J., et al., Commensal Staphylococcus aureus provokes immunity to protect against skin infection of methicillin-resistant Staphylococcus aureus. International journal of molecular sciences, 2018. 19(5): p. 1290.
120. Lee, D.U., D.M. Shin, and J.H. Hong, The regulatory role of rolipram on inflammatory mediators and cholinergic/adrenergic stimulation-induced signals in isolated primary mouse submandibular gland cells. Mediators of inflammation, 2016. 2016.
121. Chase, H., Physical factors which influence the growth of hair. The Biology of Hair Growth. Edited by Montagna W, Ellis RA. 1953, New York, Academic Press.
122. Handjiski, B., et al., Alkaline phosphatase activity and localization during the murine hair cycle. British journal of dermatology, 1994. 131(3): p. 303-310.
123. Münzel, T., et al., Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. European heart journal, 2017. 38(37): p. 2838-2849.
124. Seok, J., et al., Efficacy of Cistanche tubulosa and Laminaria japonica extracts (MK-R7) supplement in preventing patterned hair loss and promoting scalp health. Clinical nutrition research, 2015. 4(2): p. 124.
125. Paus, R., et al., Generation and cyclic remodeling of the hair follicle immune system in mice. Journal of investigative dermatology, 1998. 111(1): p. 7-18.
126. Rahmani, W., et al., Macrophages Promote Wound-Induced Hair Follicle Regeneration in a CX3CR1-and TGF-β1–Dependent Manner. Journal of Investigative Dermatology, 2018. 138(10): p. 2111-2122.
127. Weber, A.N., et al., Bruton’s tyrosine kinase: an emerging key player in innate immunity. Frontiers in immunology, 2017. 8: p. 1454.
128. Luig, M., et al., Inflammation-induced IL-6 functions as a natural brake on macrophages and limits GN. Journal of the American Society of Nephrology, 2015. 26(7): p. 1597-1607.
129. Erdogan, S., et al., The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Research in veterinary science, 2008. 84(1): p. 18-25.
130. Jin, S.-L.C., et al., Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages. The Journal of Immunology, 2005. 175(3): p. 1523-1531.
131. Mohammad, S., Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis. Current drug targets, 2015. 16(7): p. 771-775.
132. Di, G.-Q. and Z.-Q. Qin, Influences of combined traffic noise on the ability of learning and memory in mice. Noise & health, 2018. 20(92): p. 9.
133. Di, G. and L. He, Behavioral and plasma monoamine responses to high-speed railway noise stress in mice. Noise and Health, 2013. 15(65): p. 217.
134. Wang, Q., et al., Involvement of the central hypothalamic-pituitary-adrenal axis in hair growth and melanogenesis among different mouse strains. PloS one, 2018. 13(10): p. e0202955.
135. Jung, Y.-H., et al., Strain differences in the chronic mild stress animal model of depression and anxiety in mice. Biomolecules & therapeutics, 2014. 22(5): p. 453.
136. Manning, C.D., et al., Suppression of human inflammatory cell function by subtype‐selective PDE4 inhibitors correlates with inhibition of PDE4A and PDE4B. British journal of pharmacology, 1999. 128(7): p. 1393-1398.
137. OA, I. and V. OS, Mitigative effects of antioxidants in Noise Stress. Journal of Clinical Nutrition & Dietetics, 2017. 3(03).
138. Csala, M., et al., On the role of 4-hydroxynonenal in health and disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2015. 1852(5): p. 826-838.
139. Mansuri, M.S., et al., Genetic variations (Arg5Pro and Leu6Pro) modulate the structure and activity of GPX 1 and genetic risk for vitiligo. Experimental dermatology, 2016. 25(8): p. 654-657.
140. Haslam, I.S., et al., Oxidative damage control in a human (mini-) organ: Nrf2 activation protects against oxidative stress-induced hair growth inhibition. Journal of Investigative Dermatology, 2017. 137(2): p. 295-304.
141. Frossi, B., et al., Oxidative stress stimulates IL‐4 and IL‐6 production in mast cells by an APE/Ref‐1‐dependent pathway. European journal of immunology, 2003. 33(8): p. 2168-2177.
142. Voorhees, J.L., et al., Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PloS one, 2013. 8(3): p. e58488.
143. Zhang, C., et al., Interleukin-6/STAT3 pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. Journal of Biological Chemistry, 2012: p. jbc. M112. 419788.
144. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports, 2014. 6.
145. Su, H., C.-T. Lei, and C. Zhang, Interleukin-6 signaling pathway and its role in kidney disease: an update. Frontiers in immunology, 2017. 8: p. 405.
146. Castaneda, O.A., et al., Macrophages in oxidative stress and models to evaluate the antioxidant function of dietary natural compounds. journal of food and drug analysis, 2017. 25(1): p. 111-118.
147. Melcher, M., et al., Essential roles for the Tec family kinases Tec and Btk in M-CSF receptor signaling pathways that regulate macrophage survival. The Journal of Immunology, 2008. 180(12): p. 8048-8056.
148. Kasuya, A., T. Ito, and Y. Tokura, M2 macrophages promote wound-induced hair neogenesis. Journal of dermatological science, 2018. 91(3): p. 250-255.
149. Halpin, D.M., ABCD of the phosphodiesterase family: interaction and differential activity in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 2008. 3(4): p. 543.
150. Raker, V.K., C. Becker, and K. Steinbrink, The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Frontiers in immunology, 2016. 7: p. 123.
151. Isoni, C.A., et al., cAMP activates the generation of reactive oxygen species and inhibits the secretion of IL-6 in peripheral blood mononuclear cells from type 2 diabetic patients. Oxidative medicine and cellular longevity, 2009. 2.
152. Maier, C., et al., Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages. Annals of the Rheumatic Diseases, 2017. 76(6): p. 1133-1141.
153. Koga, H., et al., PDE4 inhibition as potential treatment of epidermolysis bullosa acquisita. Journal of Investigative Dermatology, 2016. 136(11): p. 2211-2220.
154. Woodby, B., et al., The PDE4 inhibitor CHF6001 affects keratinocyte proliferation via cellular redox pathways. Archives of Biochemistry and Biophysics, 2020: p. 108355.
155. Schafer, P.H., et al., Apremilast Normalizes Gene Expression of Inflammatory Mediators in Human Keratinocytes and Reduces Antigen-Induced Atopic Dermatitis in Mice. Drugs in R&D, 2019. 19(4): p. 329-338.
156. Gobejishvili, L., et al., Enhanced PDE4B expression augments LPS-inducible TNF expression in ethanol-primed monocytes: relevance to alcoholic liver disease. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2008. 295(4): p. G718-G724.
157. Kloos, W.E., Ecology of human skin. Coagulase-negative staphylococci, 1986: p. 37-50.
158. Yang, A.-J., et al., A Microtube Array Membrane (MTAM) encapsulated live fermenting Staphylococcus epidermidis as a skin probiotic patch against Cutibacterium acnes. International journal of molecular sciences, 2019. 20(1): p. 14.
159. Kloos, W.E. and T.L. Bannerman, Update on clinical significance of coagulase-negative staphylococci. Clinical microbiology reviews, 1994. 7(1): p. 117-140.
160. Kawamatawong, T., Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. Journal of thoracic disease, 2017. 9(4): p. 1144.
161. Aida, F., et al., Mushroom as a potential source of prebiotics: a review. Trends in Food Science & Technology, 2009. 20(11-12): p. 567-575.
162. Jin, S.-L.C., A.M. Latour, and M. Conti, Generation of PDE4 knockout mice by gene targeting, in Phosphodiesterase Methods and Protocols. 2005, Springer. p. 191-210.
163. Martzy, R., et al., Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Scientific reports, 2019. 9(1): p. 1-10.
164. Traisaeng, S., et al., A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins, 2019. 11(6): p. 311.
165. Kosutova, P., et al., Effect of phosphodiesterase-4 inhibitor on the inflammation, oxidative damage and apoptosis in a saline lavage-induced model of acute lung injury. 2018, Eur Respiratory Soc.
166. Liu, Y., et al., Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. The FASEB Journal, 2020. 34(1): p. 1065-1078.
167. Smiderle, F., et al., Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydrate Polymers, 2012. 87(1): p. 368-376.
168. Chen, P., et al., Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology, 2015. 148(1): p. 203-214. e16.
169. Traisaeng, S., et al., Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Scientific reports, 2020. 10(1): p. 1-10.
170. Yang, J.-X., et al., Phosphodiesterase 4B negatively regulates endotoxin-activated interleukin-1 receptor antagonist responses in macrophages. Scientific reports, 2017. 7(1): p. 1-13.
171. Lowy, R.J. and D.S. Dimitrov, Characterization of influenza virus-induced death of J774. 1 macrophages. Experimental cell research, 1997. 234(2): p. 249-258.
172. Wang, G., et al., The G protein-coupled receptor FFAR2 promotes internalization during influenza A virus entry. Journal of virology, 2020. 94(2): p. e01707-19.
173. Ujike, M. and F. Taguchi, Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses, 2015. 7(4): p. 1700-1725.
174. Hirano, T. and M. Murakami, COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity, 2020. 52(5): p. 731-733.
175. Zheng, Y., et al., Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal transduction and targeted therapy, 2020. 5(1): p. 1-13.
176. Park, A. and A. Iwasaki, Type I and type III interferons–induction, signaling, evasion, and application to combat COVID-19. Cell host & microbe, 2020.
177. Jirik, F., et al., Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. The Journal of Immunology, 1989. 142(1): p. 144-147.
178. Trian, T., et al., β 2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D. PloS one, 2011. 6(5): p. e20000.
179. Van Ly, D., et al., Inhibition of phosphodiesterase 4 modulates cytokine induction from toll like receptor activated, but not rhinovirus infected, primary human airway smooth muscle. Respiratory research, 2013. 14(1): p. 1-11.
180. Copaescu, A., et al., The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. Journal of Allergy and Clinical Immunology, 2020. 146(3): p. 518-534. e1.
181. Chen, L.Y., et al., Confronting the controversy: interleukin-6 and the COVID-19 cytokine storm syndrome. 2020, Eur Respiratory Soc.
182. Iwasaki, M., et al., Inflammation triggered by sars-cov-2 and ace2 augment drives multiple organ failure of severe covid-19: Molecular mechanisms and implications. Inflammation, 2020: p. 1-22.
183. Dang, A.T. and B.J. Marsland, Microbes, metabolites, and the gut–lung axis. Mucosal immunology, 2019. 12(4): p. 843-850.
184. Lavi, I., et al., Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. Journal of gastroenterology, 2012. 47(5): p. 504-518.
185. Ibadallah, B.X., N. Abdullah, and A.S. Shuib, Identification of Angiotensin-Converting Enzyme Inhibitory Proteins from Mycelium of. Planta Med, 2015. 81: p. 123-129.
186. Lavi, I., et al., Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Applied microbiology and biotechnology, 2010. 85(6): p. 1977-1990.
187. Baud, D., et al., Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Frontiers in public health, 2020. 8: p. 186.
188. Luoto, R., et al., Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology, 2014. 133(2): p. 405-413.
189. Namour, F., et al., Safety, pharmacokinetics and pharmacodynamics of GLPG0974, a potent and selective FFA2 antagonist, in healthy male subjects. British journal of clinical pharmacology, 2016. 82(1): p. 139-148.
190. Sivaprakasam, S., et al., An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis, 2016. 5(6): p. e238-e238.
191. Liu, Q., et al., Lung Immune Tone Regulation by the Gut-Lung Immune Axis: Short-chain Fatty Acid Receptors FFAR2 and FFAR3, and IL-1β Expression Profiling in Mouse and Human Lung. bioRxiv, 2020.
192. Masui, R., et al., G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflammatory bowel diseases, 2013. 19(13): p. 2848-2856.
193. Vemuri, R., et al., Lactobacillus acidophilus DDS-1 modulates intestinal-specific microbiota, short-chain fatty acid and immunological profiles in aging mice. Nutrients, 2019. 11(6): p. 1297.
194. Takahashi, Y., et al., Histone deacetylase inhibitors suppress ACE2 and ABO simultaneously, suggesting a preventive potential against COVID-19. 2020.
195. Wang, C., et al., Aveolar macrophage activation and cytokine storm in the pathogenesis of severe COVID-19. 2020.
196. Perez-Aso, M., et al., Apremilast, a novel phosphodiesterase 4 (PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors. Arthritis research & therapy, 2015. 17(1): p. 1-13.
197. Vagena, E., et al., A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Translational psychiatry, 2019. 9(1): p. 1-15.
指導教授 黃俊銘(Eric Chun-Ming Huang) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明