博碩士論文 106022002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:44.220.44.148
姓名 蔡沛芸(Pei-Yun Tsai)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 利用綜合遙測資訊建置之高程模型觀測近岸地形時序變遷
(Using Integrated Remote Sensing Data to Reconstruct Coastal Elevation Model and Detect Temporal Changes)
相關論文
★ 結合多種遙測衛星數據觀測湄公河水資源變化★ 利用多時期之衛星影像改進孟加拉地區之地表水量化
★ 利用ALOS SAR影像觀測2008當雄地震同震及震後形變量★ 利用衛星影像觀測2004年印度洋地震震後之海岸地形垂直變化
★ 整合Sentinel-1與TerraSAR-X 永久散射體雷達差干涉法以監測地表變形★ 利用區域電離層模式校正Sentinel-1差分干涉以偵測臺灣地表變形
★ 利用衛星影像間接建立全台海岸地形模型★ 應用Sentinel-1衛星TOPS合成孔徑雷達及最小基線長分析技術監測越南河內的地層下陷
★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan★ 以自相似算法進行衛星影像融合和水線判釋
★ 基於卷積神經網路於光學衛星影像進行跨衛星之雲偵測★ 利用衛星遙測資訊於稻米產量預測
★ 利用ICESat-2及Sentinel-2反演南海近岸水深★ 利用行動測深系統產製淺水區深度模型
★ 以多元衛星影像監測青藏高原湖泊長期水量變化★ 使用動態門檻值選取對衛星影像進行非監督式變遷偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近岸測深技術能用以蒐集海岸地區受自然與人為影響而產生之變遷資訊。為彌補船測法在水深過淺處之施測限制,本研究測試光學衛星測深演算法之應用,並致力於拓展遙測技術反演近岸水深之應用。
以比爾定律為基礎發展之光學測深技術於過去二十年間日趨成熟,本研究則以現有之光譜測深演算法為基礎,著重於光譜水深反演模型之轉移應用,藉此了解由甲地水深實測值建置之甲地水深反演模型,用於反演乙地之水深之可行性。文中分別以南中國海應用案例測試空間維度上的轉移性,並由墾丁國家公園的後灣漁港案例觀察此應用法在時間維度上轉移之成果。兩項測試共使用四種不同空間解析度的光學衛星影像,包含在南海區應用測試中,由東沙群島(測區一)轉移模型至太平島(測區二)的Sentinel-2和Worldview-2光學衛星影像,及後灣(測區三)應用測試中,重建沿岸時序高程模型的Landsat-7及SPOT光學衛星影像。
為進一步提升反演精度,另有兩項操作測試施作於反演流程中。針對Landsat-7及Sentinel-2等高度再訪率(revisit time)影像,我們將多張影像平均以降低隨機誤差造成的水深誤判;此外,也在南海應用測試中,討論底質分類能否有效降低在複雜底質種類測區因固有反照率(albedo)造成之誤判。
研究成果顯示,南海區應用測試中,在水深10米以淺處,以光達實測水深之方均根誤差(RMSE)介於1.5至3米。底質分類則可以提升0.1至1米的精度。後灣應用測試中,以空拍影像建置之高程模型為驗證值之評估顯示光譜法水深反演成果約有1.6米之誤差。總結來說,本研究中,模型轉移應用、底質分類與多影像平均法等三項操作都具有提升反演精度之潛力,並由測區結果推測能提升反演精度0.1至1米。
摘要(英) Coastal terrain is an important factor to understand natural and anthropogenic forcing contributed to the coastal processes. However, it has long been difficult to map the elevation in the intertidal and shallow water areas, due primarily to the limitation in vessel navigation. In this study, we test an algorithm of satellite derived bathymetry (SDB), aiming to broaden remote sensing applications in coastal areas. Since the physical principle of SDB based one Beer’s law had been well developed in the last two decades, we focus on the model transferability to see whether a multispectral model used to estimate water depth trained in one particular location can be adopted in another one. There are two application test for evaluate this technical question –the first is Application test in South China Sea is used to evaluate feasibility of model transfer in spatial domain, while Application test in Houwan (Kenting National Park) is to confirm model transferability in temporal domain. A total of 4 series of optical satellite missions are used in this study, including Sentinel-2 and WorldView-2 data for Dongsha and Taiping Island, and Landsat-7 and SPOT data for Houwan coastline.
To increase the accuracy of depth measurements, for Landsat-7 and Sentinel-2 images we average out multiple retrieving results to avoid random noises in each individual image. Besides, different categories of substrates are classified separately to create their own corresponded model, in prevention of estimation bias from the inherent albedo of various substrates.
Results in Application in South China Sea indicates that the retrieval depth is limited to ~10m with a root-mean-square-error (RMSE) between 1.5-3 m, as validated with ground-truth provided by air-borne LiDAR surveys. An operation of substrates classification can increase the accuracy of RMSE between 0.1-1 m. In Application in Houwan, coastal dynamic of Houwan area investigating temporal changes of coastline is achieved, where a RMSE of the digital surface model (DSM) is 1.6 m as overlapped with DSM built by a drone campaign. In conclusion, the test of 3 applications as “model transfer application”, “substrates classification” and “multiple images averaging conduct” show a great potential to improve the quality and application in SDB, whose can achieve RMSE at 0.1-1m in coastal areas.
關鍵字(中) ★ 衛星水深反演
★ 近岸水深
★ 遙測
★ 多光譜衛星
關鍵字(英) ★ Satellite Derived Bathymetry
★ Multispectral
★ Remote Sensing
★ Nearshore Bathymetry
論文目次 1. Introduction and Motivation 1
1.1. Coastal Dynamic 1
1.1.1. Coastal Dynamic Issue with Human Activities 1
1.1.2. Alternative Management Options 2
1.2. SDB Strategies and Objectives 2
1.3. Two Application Test by the Three Study Sites 6
2. Background 7
2.1. Bathymetry Mapping 7
2.1.1. Coastal Elevation Model 7
2.1.2. Shipborne Sonar 8
2.1.3. LiDAR Device 10
2.2. Remote Sensing for SDB 11
2.3. Intertidal Zone 12
2.3.1. Tidal Constituents 12
2.3.2. Zoning of Coastal Area 13
2.4. Study Sites 14
2.4.1. Coast Alteration in South China Sea 16
2.4.2. Coast Alteration in Houwan Bay of Kenting National Park 19
2.5. Satellite Images 19
2.5.1. Imagery for Bathymetry 19
2.5.2. Imagery for Intertidal Zone: 21
2.5.3. Introduction of Satellite Data: 22
3. Methodology 24
3.1. Work Flow 24
3.2. Data Preprocessing 26
3.3. Satellite Derived Bathymetry (SDB) 28
3.4. Improvement of SDB I: Model Transfer Application 29
3.5. Improvement of SDB II: Substrate Classification 29
3.6. Improvement of SDB III: Averaging of Medium Spatial Data 32
3.7. Accuracy Assessment 33
4. Application in South China Sea 35
4.1. Retrieval Methods of South China Sea 35
4.2. Mapping Result of South China Sea 40
4.2.1. Medium Spatial Resolution Images 40
4.2.2. High Spatial Resolution Images 44
5. Application in Houwan Bay of Kenting National Park 49
5.1. Retrieval Methods in Houwan Coastal Area 49
5.1.1. Retrieval Processing of Intertidal Zone in Houwan 57
5.1.2. Retrieval Processing of Bathymetry in Houwan 58
5.1.3. High Resolution Integration Model in Houwan 59
5.2. Mapping Result in Houwan Coastal Area 60
5.2.1. Overall Accuracy 60
5.2.2. Intertidal Zone Elevation 60
5.2.3. Near-shore Bathymetry 62
5.2.4. Integration Model of Recent Period 64
6. Discussion 65
6.1. Source of Errors 65
6.2. Bathymetry Retrieval Assessment 67
6.2.1. Overall Discussion of Bathymetry 67
6.2.2. Comparison of Different Processing Disposition 69
6.3. Intertidal Zone Retrieval Assessment 73
7. Conclusion and Future Work 76
8. Reference 78
參考文獻 Airoldi, L. & Beck, M.W. (2007) Loss, status and trends for coastal habitats of Europe. Oceanography and Marine Biology: An Annual Review, 45, 345–405.
Blyth, K. (1981). Remote Sensing in Hydrology. Report No. 74, Institute of Hydrology, Wallingford.
Burke, L., Kura, Y., Kassem, K., Revenga, C., Spalding, M. & McAllister, D. (2001) Pilot Analysis of Global Ecosystems. Coastal Ecosystems. World Resources Institute, Washington, D.C. http://pdf.wri.org/page_coastal.pdf Viewed 10 July 2008.
Camp, L. (1970). Underwater Acoustics. John Wiley & Sons, 308p.
Cheng, Y., & Andersen, O. B. (2010). Improvement in global ocean tide model in shallow water regions. Poster, SV, 1-68.
Chénier, R., Faucher, M. A., & Ahola, R. (2018). Satellite-derived bathymetry for improving Canadian Hydrographic Service charts. ISPRS International Journal of Geo-Information, 7(8), 306.
Col, J. (2000). Biomes: Intertidal Zone. Retrieved from http://www.enchantedlearning.com/biomes/intertidal/intertidal.shtml
Davis, J.L.D., Levin, L.A. & Walther, S.M. (2002). Artificial armored shorelines: sites for open-coast species in a southern California Bay. Marine Biology, 140, 1249–1262.
EEA (2006). The Changing Faces of Europe’s Coastal Areas. EEA Report6⁄2006. OPOCE, Luxembourg, http://www.eea.europa.eu/publications/eca-report-2006-6, Viewed 9 December 2009.
Erdle, S. Y., Davis, J. L., & Sellner, K. G. (2006). Management, policy, science, and engineering of nonstructural erosion control in the Chesapeake Bay. In Proc (pp. 08-164).
Ernstsen, V. B., Noormets, R., Hebbeln, D., Bartholomä, A., & Flemming, B. W. (2006). Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-marine letters, 26(3), 141-149.
French, J.R. (2008) Hydrodynamic modelling of estuarine flood defence realignment as an adaptive management response to sea-level rise. Journal of Coastal Research, 24, 1–12.
Gao, J. (2009). Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103-116.
Garbutt, A. & Wolters, M. (2008) The natural regeneration of salt marsh on formerly reclaimed land. Applied Vegetation Science, 11, 335–344.
GetMapping. How accurate is Height Data and LiDAR? Retrieved from https://www.getmapping.com/support/height-lidar-data/how-accurate-height-data-and-lidar, last accessed on July 8, 2019.
Hill, A. (1996). Why Tides? Retrieved from http://www.sfgate.com/getoutside/1996/jun/tides.html
Hovem, J.M. (2007). Underwater Acoustics: Propagation, Devices and Systems, Journal of Electroceramics, 19(4):339-347.
Huff, Lloyd C. and Guy T. Noll. (2007). Sonar, Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd edition, pp. 321-349, American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland.
Hughes, R.G., Fletcher, P.W. & Hardy, M.J. (2009) Successional development of saltmarsh in two managed realignment areas in SE England, and prospects for saltmarsh restoration. Marine Ecology Progress Series, 384, 13–22.
Island Ecology 2011. Intertidal Zone. Retrieved June 19, 2019, from https://sites.google.com/site/islandecology2011/intertidal-zone
Jerlov, N. G. (1951). Optical Studies of Ocean Waters. Reports of The Swedish Deep Sea Expedition, 3(1), 3-57.
Kasvi, E., Salmela, J., Lotsari, E., Kumpula, T., & Lane, S. N. (2019). Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology, 333, 180-197.
Living Shoreline Summit Steering Committee (2006). Preface. Proceedings of the 2006 Living Shoreline Summit, Chesapeake Bay, CRC Publ. No. 08-164
Lyzenga, D.R. (1978). Passive Remote Sensing Techniques for Mapping Water Depth and Bottom Features. Applied Optics., 17, 379–383.
Lyzenga, D.R. (1981). Remote Sensing of Bottom Reflectance and Water Attenuation Parameters in Shallow Water using Aircraft and LANDSAT Data. Int. J. Remote Sens. 2, 71–82.
Lyzenga, D.R. (1985). Shallow-water Bathymetry using combined LiDAR and Passive Multispectral Scanner Data. International Journal of Remote Sensing 6, 6, 115–125.
Mallet, C., and F. Bretar. (2009). Full-waveform Topographic LiDAR: State-of-the-art, ISPRS Journal of Photogrammetry and Remote Sensing, 64(1):1-16.
Michener, W.K., Blood, E.R., Bildstein, K.L., Brinson, M.M. & Gardner, L.R. (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications, 7, 770–801.
Morel, A.; Maritorena, S. Bio-optical Properties of Oceanic Waters: A Reappraisal. J. Geophys. Res. (2001). 106, 7163–7180.
Morris, R.K.A, Reach, I.S., Duffy, M.J., Collins, T.S.& Leafe, R.N. (2004) On the loss of saltmarshes in south-east England and the relationship with Nereis diversicolor. Journal of Applied Ecology, 41, 787–791.
Müller-Wilm, U. (2016). Sentinel-2 MSI–Level-2A Prototype Processor Installation and User Manual. Telespazio VEGA Deutschland GmbH: Darmstadt, Germany, 51.
Munk, W. H. and D. E. Cartwright. (1966). Tidal Spectroscopy and Prediction. Philos. Trans. R. Soc. London, A, 259:533-583.
NOAA, (2010). Ocean Explorer, URL: http://oceanexplorer.noaa.gov/explorations/04dee pscope/background/deeplight/media/diagram3.html (Last visited at 2011/6/16)
Pidwirny, M. (2007). The Encyclopedia of Earth: Tide. Retrieved from http://www.eoearth.org/article/Tide
Shih, P. T. Y., Arumugam, D., Shyue, S. W., Chen, Y. H., Wang, H. J., Chen, J. C., & Chen, J. H. (2010). The 2010 Taiwan Bathymetric Lidar Survey of Penghu and Dongsha Atoll.
Smith, K.M. (2006) Integrating habitat and shoreline dynamics into living shoreline applications. Management Policy, Science, and Engineering of Nonstructural Erosion Control in the Chesapeake Bay (eds S.Y. Erdle, J.L.D. Davis & K.J. Sellner), pp. 9–11. Chesapeake Bay. CRC Publ. No. 08-164, Gloucester, VA.
SONG, H. B., GENG, J. H., Wang, H. K., ZHANG, W. S., FANG, Y. X., HAO, T. Y., & JIANG, W. W. (2001). A preliminary study of gas hydrates in Dongsha region north of South China Sea. Chinese Journal of Geophysics, 44(5), 684-691.
Stumpf, R.P. (2003). Holderied, K.; Sinclair, M. Determination of Water Depth with High-Resolution Imagery over Variable Bottom Types. Limnol. Oceanogr. 48, 547–556
Thompson, R.C., Crowe, T.P. & Hawkins, S.J. (2002) Rocky intertidal com-munities: past environmental changes, present status and predictions for the next 25 years. Environmental Conservation, 29, 168–191
Timmerman, P., & White, R. (1997). Megahydropolis: coastal cities in the context of global environmental change. Global Environmental Change, 7(3), 205-234.
Townend, I. & Pethick, J. (2002) Estuarine flooding and managed retreat. Philosophical Transactions Royal Society of LondonA, 360, 1477–1495.
Tsai, T. H. (2015, March 28). Gravel beach of Houwan caused by breakwater engineering. Retrieved June 10, 2019, from https://news.ltn.com.tw/news/local/paper/866888.
Tseng, K. H., Kuo, C. Y., Lin, T. H., Huang, Z. C., Lin, Y. C., Liao, W. H., & Chen, C. F. (2017). Reconstruction of time-varying tidal flat topography using optical remote sensing imageries. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 92-103.
U.S. Census Bureau (2009) World Population: 1950-2050. http://www.census.gov/ipc/www/idb/worldpopgraph.php Viewed 9 December 2009
USACE, (2002). Engineering and Design Hydrographic Surveying: EM 1110-2-1003, Department of the Army, U.S. Army Corps of Engineers, Washington D.C., URL: http://140.194.76.129/publications/eng-manuals/ em1110-2-1003/, Last accessed Sep 26, 2011
USGS, (2016). Landsat Collection 1 Level-1 Data Processing Starting Soon. URL: https://landsat.usgs.gov/sites/default/files/documents/LU_Special_Iss4_2016.pdf (Last visited at 2019/7/8)
Wagner, D.J. (1999). The Speed of Light and the Index of Refraction, http://www.rpi.edu/dept/phys/Dept2/APPhys1/op tics/optics/node4.html, last accessed on March 16, 2012.
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033.
[CSRSR (2018). DAOJIAO BIANQIAN JIANCE JI SHUISHEN FENXI JISHU FAZHAN GONGZUOAN. MOI Commission Project. Unpublished.]
[Hsiao, H. C. (2010) Nansha fongyun – Nansha cuyndao wunti de yanpan yu fenxi. Taipei: Studentbooktw Co. Ltd, 19.]
[Long, C. N. (1998) Malaixiya jingying kaifa nansha qundau suojian shilu. Navy Professional Journal, 32, 8, 88.]
[WRA (2014). BANLI FENGGANGXI YINAN HAIAN FANGHU JIBEN ZILIAO TIAOCHA. Retrieved June 20, 2019, from http://epaper.wra.gov.tw/Article_Detail.aspx?s=3F7D7BC4C3D01CAD]
指導教授 曾國欣(Kuo-Hsin Tseng) 審核日期 2019-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明