博碩士論文 106022601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.230.173.188
姓名 曼黎(Mohammad Daman Huri)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例
(Landslide and Flood Mapping Using Multi-Temporal Sentinel-1 C-band SAR Imagery in Pacitan, East Java, Indonesia)
相關論文
★ 評估不同數值地型資料於降雨型崩塌作用模式之應用性-以小尺度坡面之崩塌事件為例★ 應用最大熵法於蒙古山區進行森林樹種分類
★ 利用Landsat衛星影像監測並預測中美洲瓜地馬拉首都–瓜地馬拉市之都市發展★ 都市化與發展:對海地永續發展之意涵
★ 客家文化重點發展區之客家政策研究:以龍潭大池整體環境規劃與營造計畫為例★ 利用多時期Landsat衛星影像進行森林砍伐之評估 -以尼加拉瓜波沙瓦生態保護區為例
★ 融合光學衛星影像及地形資訊進行崩塌地之判釋★ 應用Sentinel-1 SAR影像進行水稻監測-以泰國中部大城府省為例
★ 都市三維結構變遷之分析-以臺灣臺北市為例★ 應用 Sentinel-1 合成孔徑雷達資料進行地層下陷監測 - 以 2017 年泰國曼谷都 會區為例
★ 利用人工神經網絡模型建立多事件為基礎之崩塌模型-以台灣玉山國家公園為例★ 應用衛星影像於都市發展之監測與預測 ─以台灣桃園為例
★ 分析降雨及不透水面對台南水患發生之影響★ 應用Google Earth Engine與影像分類技術於巴拉圭查科地區進行森林砍伐評估
★ 母岩裸露指標之建立並應用於崩塌判釋與監測★ 應用邏輯斯迴歸整合土壤含水量與臨界降雨之崩塌預測模式-以高屏溪流域為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 印尼鄰近赤道,受颱風災害頻繁,印尼國家災害管理局於2016年指出2011年至2015年期間在印尼各個地區發生約2,425起土石流災害事件,其中爪哇島(Java Island)由其為甚。2017年11月27日至30日期間,位於爪哇島的南海岸-東爪哇省的Pacitan地區受到Cempaka颱風侵襲,為印尼受災最嚴重的地區之一,發生淹水與多處崩塌。在災害發生時,對於崩塌和淹水地區的緊急偵測,對於災害急救與處置極為重要,而目前利用衛星資料可有效應、且經濟地進行災害偵測的工作。在多種衛星資源中,合成孔徑雷達(SAR)受到雲霧覆蓋的影響較小,此特性應在颱風事件期間或災後的快速偵測中非常有用,然而使用雷達資料同時針對淹水及崩塌進行偵測之研究較少,且淹水地區與崩塌地在雷達迴波訊號強度較低,兩者特性相似,不易進行區判。本研究認為可以利用變遷偵測之概念,使用多時序的雷達影像針對此問題進行突破。操作上,本研究應用多時期之Sentinel-1衛星C波段影像,針對Cempaka颱風事件,同時進行崩塌和淹水區域之偵測試驗。首先分析Sentinel-1的多時序影像中崩塌和淹水區域的後向散射係數之時序變遷特性。其次,基於上述特性利用支援向量機(Support Vector Machine, SVM)對崩塌和淹水區域進行影像分類,並對分類結果進行精度評估。試驗結果發現,整合VV及VH極化資料之6組時序影像(共12個波段組合)有最佳的分類結果,總體精度可達81.42%,kappa係數為0.51,說明本研究提出之方法能有效地同時進行崩塌即淹水的監測。
摘要(英) The National Disaster Management Agency of Indonesia (2016) recorded 2,425 incidents of land movement disaster during 2011 to 2015, with locations occurring in various parts of Indonesia. In the South Coast of Java Island, Pacitan where located in East Java is one of the most heavily damaged area, during the tropical cyclones, Cempaka, from 27 to 30 November 2017, and induced floods in the lowland area and landslides in the mountainous area. For landslide and flood detection, satellite data is effective to be applied for larger area with economic cost. Among many kinds of satellite resources, synthetic aperture radar (SAR) has less limitation operating in cloudy conditions, which is considered a very useful characteristic for landslide and flood rapid mapping during cloudy condition. With applying SAR data, few studies have focused on the detection of flood and landslide at once, considering their similar backscattering characteristics which are normally lower and difficult to be distinguished. However, this study proposed a method which analyzes the multi-temporal SAR backscattering to investigate the difference between flood and landslide in time domain.
This study focuses on availability of Sentinel-1 C-Band SAR imagery to detect the landslide and flooded area for Cempaka event. The time series of Sentinel-1 were pre-processed to analyze the backscatter change over the landslide and flooded area. Then, the SVM (Support Vector Machine) classifier was applied to map landslide and flooded areas. The accuracy assessment shows that the best classification result is obtained when combining both six VV and six VH polarization time-series data (twelve-bands in SVM classification). The overall accuracy achieves 81.42% and kappa coefficient 0.51. The result indicates the applicability of the proposed method for landslide and flood detection.
關鍵字(中) ★ 崩塌
★ 淹水
★ 合成孔徑雷達
★ Cempaka颱風
★ Sentinel-1
關鍵字(英) ★ Landslide
★ Flood
★ Synthetic Aperture Radar (SAR),
★ Sentinel-1
★ Cempaka Tropical Cyclone
論文目次 中文摘要 v
ABSTRACT vi
ACKNOWLEDGEMENTS vii
Table of Contents viii
List of Figures and Illustrations x
List of Tables xi
1. Chapter 1-Introduction 1
1.1. Research Background 1
1.2. Statement of Research Problem 5
1.3. Research Objective 5
2. Chapter 2-Literature Review 6
2.1. Landslide 6
2.2. Floods or/and Debris flow 6
2.3. Synthetic Aperture Radar (SAR) 7
2.3.1. Brief Description of SAR imagery compared to Optical imagery 7
3. Chapter 3-Study Area and Data Collection 9
3.1. Study Area 9
3.1.1. General Information 9
3.2. Data Collection 10
3.2.1. Sentinel-1 Data 10
3.2.2. Digital Elevation Model (DEM) 11
3.2.3. Ancillary Data 11

4. Chapter 4-Methods 12
4.1. Image Pre-Processing 13
4.2. Multi-Temporal Backscattering Analysis 14
4.3. Support Vector Machine (SVM) Classification 14
4.3. Accuracy Assessment 15
5. Chapter 5-Results 16
5.1. Multi-Temporal Backscattering Analysis of Sentinel-C-band SAR Imagery 16
5.2. Landslide and Flood Mapping with Support Vector Machine 17
5.2. Accuracy Assessment 20
6. Chapter 6-Discussion 23
6.1. Applicability of VV and VH Sentinel-1 Polarization modes 23
6.2. Multi-Temporal Backscatter Analysis of Landslide and Flood 23
7. Chapter 7-Conclusions and Recommendations 25
7.1. Conclusions 25
7.2. Recommendations 26
References 27
參考文獻 Amitrano, D., Di Martino, G., & Iodice, A. (2018). Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 6, , 3290-3300.
Arciniegas, G., Bijker, W., Kerle, N., & Tolpekin, V. (2007). Coherence- and Amplitude- Based Analysis of Seismogenic Damage in Bam, Iran, Using ENVISAT ASAR Data. IEEE Transactions On Geoscience and Remote Sensing, Vol. 45. No. 6, 1571-1582.
Blaschke, T., Feizizadeh, B., & Holbling, D. (2014, December 12). Object-Based Image Analysis and Digital Terrain Analysis for Locating Lanslides in the Urmia Lake Basin, Iran. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,, 7, 4806- 4818.
Bordoni, M., Meisina, C., Zizioli, D., Valentino, R., Bitteli, M., & Chersich, S. (2014). Rainfall-Induced Landslide: Slope Stability Analysis Through Field Monitoring. Landslide Science for a Safer Geoenvironment, Vol. 3, 273-280.
Chang, K.-J., Chan, Y.-C., Chen, R.-F., & Hsieh, Y.-C. (2018). Geomorfological Evolution of Landslide Near an Active Normal Fault in Northern Taiwan, as Revealed by Lidar and Unmanned Aircrat System Data. Natural Hazard Earth System Science, 18, 709-727.
Christophe, E., Chia, A., Yin, T., & Kwoh, L. (2010, July 25-30). 2009 Earthquakees in Sumatera: The Use of L-Band Interferometry in A SAR-Hostile Environment. In Proceedings of the IEEE IGARSS, Honolulu, HI, USA, pp. 1202-1205.
Clausi, D. (2001, June 26). Comparison and fusion of co‐occurrence, Gabor and MRF texture features for classification of SAR sea‐ice imagery. Atmosphere-Ocean, 39(3), 183-194.
Clement, M., Kilsby, C., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. J Flood Risk Management 11 , 152–168.
Florence, W., & Frankie, L. (2018). From Landslide Susceptibility to Landslide Frequency ; A territory-wide study in Hongkong. Enggineering Geology, 242, 12-22.
Furuta, R., & Tomiyama, N. (2008). A study of Detection of Landslide Disaster due to the Pakistan Earthquake using ALOS data. ISPRS, 1-4.
Galati, G. (2016). 100 Years of Radar. London: Springer Cham Heidelberg New York.
Hadmoko, D., Lavigne, F., Sartohadi, J., Gomes, C., & Daryono. (2017). Spatial_Temporal Distribution of Landslide in Java and The Triggered Factors. Forum Geografi: Indonesian Journal Spatial and Regional Analysis, 1-15.
Haliza, A., & Mapjabil, J. (2017). Landslide Disaster in Malaysia: an overview. Helath and the Environment Journal, 8(1), 58-72.
Harmsworth, G., & Raynor, B. (2005). Cultural Consideration in Landslide Risk Perception. In T. Glade, M. Anderson, & M. Crozier, Landslide Hazard and Risk (p. 219). The Atrium, Southern Gate, Chichester,West Sussex : John Wiley & Sons Ltd.
Henderson, F., & Lewis, A. (1998). Principles and Applications of Imaging Radar. New York: American Society for Photogrammetry and Remote Sensing.
Henry, J. (2006). Envisat multi-polarized ASAR data for flood mapping. International Journal of Remote Sensing, 27, 1921-1929.
Highland, L.M, L., & Bobrowsky, P. (2008). The landslide handbook—A guide to understanding landslides: Reston,. Virginia: U.S Geological Survey Circular.
Jackson, J. (1997). Glossary of geology, fourth edition: Prepared by the American Geological Institute . Alexxandria, Virginia, USA: Doubleday.
Jin, Y.-Q., & Xu, F. (2013). Polarimetric Sacttering and SAR Information Retreival. Singapore: John Wiley & Sons Singapore Pte.Ltd.
Kandaswamy, U., Adjeroh, D., & Lee, M. (2005, September -). Efficient Texture Analysis of SAR Imagery. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 43(9), 2075.
Kyriou, A., & Nikolakopoulos, K. (2018). Assessing the suitability of Sentinel-1 data for landslide mapping. EUROPEAN JOURNAL OF REMOTE SENSING VOL. 51, NO. 1, 402.
Landuyt, L., Van Wesemel, A., Schumann, G.-P., & Hostache, R. (2019). Flood Mapping Based on Synthetic Aperture Radar: An Assessment of Established Approaches. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 2, , 722-740.
Long, S., Fatoyinbo, T., & Policelli, F. (2014). Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 9 , 1-10.
Mandal, S., & Maiti, R. (2015). Semi-quantitative Approaches for Landslide Assesment and Prediction. London: Springer Science+Business Media Singapore .
Meteorology, Climatology, and Geophysics Agency of Indonesia. (2017). National Report of Disaster in Indonesia in 2017. Jakarta: BMKG.
Mikos, M., Arbanas, Z., & Sassa, K. (2017). Advancing Culture of Living with Landslides. Charm: Springer International Publishing.
Mondini, A., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A., & Monserra, O. (2019). Sentinel-1 SAR Amplitude Imagery for Rapid Landslide Detection. Remote Sens.11, 760-785.
National Disaster Management Authority of Indonesia. (2016). Indonesia Disaster Database. Jakarta: BNPB Press.
National Disaster Management Authority of Indonesia. (2017). Disaster in Indonesia During 2017. Jakarta: BNPB.
Plank, S. (2014). Rapid Damage Assestment by Means of Multi Temporal SAR-A comprehensive review and Outlook to Sentinel-1. Remote Sens. 6, , 4870-4906.
Sassa, K. (2007). Landslide Science as a New Scientific Discipline. In K. Sassa, H. Fukuoka, F. Wang, & G. Wang, Progress in Landslide Science (pp. 3-12). Berlin: Srpinger Germany.
Sassa, K., Fukuoka, H., Wang, F., & Wang, G. (2007). Progress in Landslide. Berlin: Springer International Publishing.
Solari, L., Del Soldato, M., Montalti, R., Bianchini, S., Raspini, F., Thuegaz, P., . . . Casagli, N. (2019). A Sentinel-1 based hot-spot analysis: landslide mapping in north-western Italy. INTERNATIONAL JOURNAL OF REMOTE SENSING , VOL. 40, NO. 20, 7898-7921.
Team Sentinel-1. (2013). Sentinel-1 User Handbook. European Space Agency (ESA).
Tiwari, B., & Cepeda, J. (2014). Rain Induced Landslide. Landslide Science for a Safer Geoenvironment, Vol. 3, 271.
Vadher, P., & Dalal, N. (2018). Flood Inundation Mapping and Analysis Using SAR Data at Middle Reach of the Brahmaputra River. IJARIIE-ISSN(O) Vol-4 Issue-3, 785-793.
Wang, F., Konagai, K., Marui, H., mahdavifar, M., & Scrascia-Mugnozza, G. (2014). Earthquake-Induced Landslide. Landslide Science for a Safer Geoenvironment, Vol. 3, 137-140.
Woodhouse, I. (2006). Introduction to microwave remote sensing. . Boca Raton: CRC Press, Taylor & Francis Group .
指導教授 姜壽浩(Gilbert Chiang) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明