博碩士論文 106022605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:54.208.73.179
姓名 東單安(Khuc Thanh Dong)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用地面測站及衛星觀測之氣膠光學厚度估算越南河內地區PM2.5
(Estimating Particulate Matter (PM2.5) from Aerosol Optical Depth based on ground-based station and satellite observations in Hanoi, Vietnam)
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 福爾摩沙衛星五號遙測儀之在軌絕對輻射校正
★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
★ 衛星資料在臺灣地區西南氣流降雨估算之應用★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用
★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
★ 對數常態分布在氣膠消光係數廓線擬合之應用★ 氣膠光學厚度與懸浮微粒濃度關係之探討及其在衛星觀測之應用
★ 地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析★ 同時輻射率定法在向日葵八號氣膠光學厚度反演之應用
★ 應用Landsat衛星影像探討越南河內都市化所致土地利用改變在都市熱島效應強度之影響★ 結合衛星與地面觀測資料在台中地區能見度與氣膠參數變化之分析
★ 福爾摩沙衛星五號遙測儀升空前後等化係數之率定★ 應用氣膠種類與垂直分布建立衛星氣膠光學厚度和PM濃度之關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 空氣污染(大氣氣膠)對全球所造成的影響已成為現今重要的議題,除氣候變遷外,前人研究顯示〖PM〗_2.5對人類的健康有顯著的影響,空氣污染的監測因此重要。地面〖PM〗_2.5測站能精準的評估空氣污染,但常受限於測站的空間分佈,因此本研究使用AERONET的氣膠光學厚度(aerosol optical depth, AOD)及〖PM〗_2.5 測站資料,並根據沙塵(DS)、人為污染(AP)及生質然燒(BB)等氣膠種類來建立AOD及〖PM〗_2.5的關係式,應用於衛星監測以克服地面測站之限制。除氣膠種類外,本研究亦進一步考慮相對濕度對AOD及〖PM〗_2.5關係式的影響。結果顯示不同種類AOD及〖PM〗_2.5的相關係數在使用NGAI(Normalized Gradient Aerosol Index)進行氣膠種類分類後,相關係數分別改進為0.815(DS) 、0.693(AP)及0.741(BB), 加入相對濕度後則可提昇至0.853(DS)、0.707(AP)及0.768(BB)。最後將研究所建立的關係式應用至MODIS的AOD產品進行〖PM〗_2.5濃度之估算,在時間與空間的分布上均獲得不錯之結果,顯示本研究所建構之AOD及〖PM〗_2.5濃度在衛星反演〖PM〗_2.5濃度具相當的實用價值。
摘要(英) Air pollution is a hot issue caused serious problems all around the world. Previous studies have shown that PM2.5 concentrations have a strong influence on human health. PM2.5 ground-based stations are appropriate to evaluate air pollution with high accuracy but typically limited in spatial distribution. This study used AOD from AERONET stations and PM2.5 concentrations within study area to representing 3 types of aerosols: dust (DS), anthropogenic pollutants (AP) and biomass burning (BB) to build relationships between AOD and PM2.5 concentrations. In addition, the study figures the relative humidity effect on the relationship between AOD and PM2.5 concentrations. The results show that the correlation coefficient between AERONET AOD and PM2.5 concentrations were 0.6, 0.652 and 0.729 for DS, AP, and BB source region respectively. After NGAI (Normalized Gradient Aerosol Index) method applied, the correlation coefficient improved to 0.815, 0.693 and 0.741 for DS, AP, and BB, respectively. The correlation coefficient became as high as 0.853, 0.707 and 0.768 for DS, AP, and BB, respectively after considering RH correction. Then, the linear regression method was used to calibrate spectral AODs of MODIS before applying to the estimation of PM2.5 concentration based on spectral AODs of AERONET. The results demonstrate the potential of satellite observation to estimating the concentration and characteristics of PM2.5 concentrations after comparing the ground-based measurements.
關鍵字(中) ★ 空氣污染、PM2.5、氣膠光學厚度、氣膠種類、正規化氣膠指數 (NGAI)、相對溼度 關鍵字(英) ★ Air pollution
★  PM2.5
★  Aerosol optical depth
★  Aerosol type
★  NGAI
★  Relative humidity
論文目次 TABLE OF CONTENTS
ABSTRACT I
LIST OF FIGURES VI
LIST OF TABLES IX
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: LITERATURE REVIEW 9
2.1. Ground-based PM2.5 measurement 9
2.2. Aerosol Optical Depth 12
2.2.1. AOD ground-based measurement 12
2.2.2. AOD Satellite data 14
2.3. The relationship between Aerosol Optical Depth and PM2.5 15
CHAPTER 3: METHODOLOGY 18
3.1 . Retrieval AOD MODIS over Hanoi area 19
3.2. Establish relationships between AOD AERONET and PM2.5 20
3.2.1. Effect of aerosol- type on the AOD-PM2.5 relationship 22
3.2.2. Effect of relative humidity and relative humidity correction. 26
CHAPTER 4: DATA COLLECTION 28
4.1. AOD AERONET data 29
4.2. PM2.5 and Relative Humidity 29
4.3. MODIS AOD 31
CHAPTER 5: RESULT AND DISCUSSION 32
5.1. Evaluation MODIS Aerosol Optical Depth retrieved 32
5.1.1. Compare between AOD MODIS and AOD AERONET 32
5.1.2. AOD seasonal distribution 35
5.1.3. Calibrate AOD MODIS base on AOD AERONET over Hanoi 38
5.2. Aerosol types classification 39
5.3. The relationship between AOD and PM2.5 41
5.4. Application on satellite AOD 45
5.4.1 Validation MODIS PM2.5 with PM2.5 of the independent ground-based station 46
5.4.2. PM2.5 retrieval and aerosol classification 48
5.4.3. PM2.5 Seasonal distribution 51
CHAPTER 6: CONCLUTION AND FUTURE WORK 53
6.1. Conclusion 53
6.2. Future work 54
REFERENCES 55
參考文獻 REFERENCES
Boselli, A., R. Caggiano, C. Cornacchia, F. Madonna, L. Mona, M. Macchiato, G. Pappalardo, and S. Trippetta (2012), Multi year sun-photometer measurements for aerosol characterization in a Central Mediterranean site, Atmospheric Research, 104, 98-110.
Claudio Tomasi, Sandro Fuzzi, and A. Kokhanovsky (2016), Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate.
Du, Y., X. Xu, M. Chu, Y. Guo, and J. Wang (2016), Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence, J Thorac Dis, 8(1), E8-E19.
Eck, T. F., et al. (2005), Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J Geophys Res-Atmos, 110(D6).
Engel-Cox, J. A., C. H. Holloman, B. W. Coutant, and R. M. Hoff (2004), Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality, Atmospheric Environment, 38(16), 2495-2509.
Fu, D., X. Xia, J. Wang, X. Zhang, X. Li, and J. Liu (2018), Synergy of AERONET and MODIS AOD products in the estimation of PM2.5 concentrations in Beijing, Sci Rep, 8(1), 10174.
Gatari, M., A. Wagner, and J. Boman (2005), Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya, Sci Total Environ, 341(1-3), 241-249.
Green, M., S. Kondragunta, P. Ciren, and C. Y. Xu (2009), Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 Mass at Bondville, Illinois, Journal of the Air & Waste Management Association, 59(9), 1082-1091.
Hai, C. D., and N. T. K. Oanh (2013), Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi, Atmospheric Environment, 78, 105-112.
Hauser, A., D. Oesch, and N. Foppa (2005), Aerosol optical depth over land: Comparing AERONET, AVHRR and MODIS, Geophysical Research Letters, 32(17).
Hu, D. W., L. P. Qiao, J. M. Chen, X. N. Ye, X. Yang, T. T. Cheng, and W. Fang (2010), Hygroscopicity of Inorganic Aerosols: Size and Relative Humidity Effects on the Growth Factor, Aerosol and Air Quality Research, 10(3), 255-264.
Huang, C.-H. (2007), Field Comparison of Real-Time PM2.5 Readings from a Beta Gauge Monitor and a Light Scattering Method, 239-250 pp.
Hutchison, K. D., S. J. Faruqui, and S. Smith (2008), Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses, Atmospheric Environment, 42(3), 530-543.
Karagulian, F., C. Belis, F. Lagler, M. Barbiere, and M. Gerboles (2012), Evaluation of a portable nephelometer against the Tapered Element Oscillating Microbalance method for monitoring PM2.5, 2145-2153 pp.
Lee, B. J., B. Kim, and K. Lee (2014), Air pollution exposure and cardiovascular disease, Toxicol Res, 30(2), 71-75.
Li, B. G., H. S. Yuan, N. Feng, and S. Tao (2009), Comparing MODIS and AERONET aerosol optical depth over China, International Journal of Remote Sensing, 30(24), 6519-6529.
Li, J., Z. Han, and R. Zhang (2014), Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia, 14–27 pp.
Li, R., R. Zhou, and J. Zhang (2018), Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases, Oncol Lett, 15(5), 7506-7514.
Li, T., H. Shen, and L. Zhang (2016), Mapping PM2.5 distribution in China by fusing station measurements and satellite observation, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5761-5764.
Li, T. W., H. F. Shen, C. Zeng, Q. Q. Yuan, and L. P. Zhang (2017), Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment, Atmospheric Environment, 152, 477-489.
Lin, T. H., G. R. Liu, and C. Y. Liu (2016), A Novel Index for Atmospheric Aerosol Types Categorization with Spectral Optical Depths from Satellite Retrieval, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 277-279.
Liu, Y., J. A. Sarnat, A. Kilaru, D. J. Jacob, and P. Koutrakis (2005), Estimating ground-level PM2.5 in the eastern united states using satellite remote sensing, Environmental Science & Technology, 39(9), 3269-3278.
Mariano, G. L., F. Lopes, M. Jorge, and E. Landulfo (2010), Assessment of biomass burnings activity with the synergy of sunphotometric and LIDAR measurements in São Paulo, Brazil, 486-499 pp.
McPhetres, A., and S. Aggarwal (2018), An Evaluation of MODIS-Retrieved Aerosol Optical Depth over AERONET Sites in Alaska, Remote Sensing, 10(9).
NASA (2013a), National Aeronautics and Space Administration, MODIS product description. http://modis-atmos.gsfc.nasa.gov/MOD04_L2/.
Paciorek, C. J., Y. Liu, H. Moreno-Macias, and S. Kondragunta (2008), Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5, Environmental Science & Technology, 42(15), 5800-5806.
Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products, and validation, Journal of the Atmospheric Sciences, 62(4), 947-973.
Saksena, S., P. V. Luong, D. D. Quan, P. T. Nhat, D. T. Tho, and T. N. Quang (2006), Commuters′ exposure to particulate matter and carbon monoxide in Hanoi, Vietnam: a pilot study, 1-33 pp.
Tao, J. H., M. G. Zhang, L. F. Chen, Z. F. Wang, L. Su, C. Ge, X. Han, and M. M. Zou (2013), A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness, Sci China Earth Sci, 56(8), 1422-1433.
V. Martonchik, J., D. J. Diner, R. Kahn, B. J. Gaitley, and B. Holben (2004), Comparison of MISR and AERONET aerosol optical depths over desert sites.
Wang, J., and S. A. Christopher (2003), Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies, Geophysical Research Letters, 30(21).
Zheng, C. W., C. F. Zhao, Y. N. Zhu, Y. Wang, X. Q. Shi, X. L. Wu, T. M. Chen, F. Wu, and Y. M. Qiu (2017), Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing, Atmospheric Chemistry and Physics, 17(21), 13473-13489.
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明