博碩士論文 106127003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.139.107.131
姓名 陳珈鈞(Jia-Jyun Chen)  查詢紙本館藏   畢業系所 學習與教學研究所
論文名稱 TIMSS 2015臺灣資料中學生變項與數學成就之關聯:學習分析取向
(Relationship between Student Variables and Mathematics Achievement from TIMSS 2015 Data in Taiwan: Learning Analytical Approach)
相關論文
★ 社群媒體中結構化知識活動對英文為外語學生預寫成效之研究★ 認知風格與先備知識於預測、模擬、觀察、解釋科學探究活動之影響
★ 雲端概念構圖結合小組互動於國小六年級自然科學習成效之研究★ A synthesis of data-driven pattern analysis on co-construction concept map activity and social learning network
★ 以行動者網絡理論探究座落於國小的列聯表★ 多媒體階層圖於商用英文寫作之成效研究
★ 實施課前結構階層圖對於國中生寫作活動 成效之研究★ 學生對於線上概念構圖融入國文科教學的觀點
★ 同儕互教對國中生數學學習成效之影響:準備、講解、互動三階段分析★ 幼兒數概念體驗的遊戲化學習環境設計
★ 一行禪師正念教育思想之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 數學是科學之母,說明數學的重要性。從定期參加的國際大型成就評量可知,臺灣學生數學平均成就高,但學生數學成就落差越來越大,是我們嚴重的教育問題。了解哪些變項使得學生獲得高數學成就變得相當重要。故本研究旨在使用TIMSS 2015資料庫中的數據資料,對學生在TIMSS 2015數學成就中的高成就組與低學習組進行分類。該研究樣本由參加2015年TIMSS的5711名臺灣八年級學生組成。在數據分析中,以決策樹DT、分類與回歸樹CART、支持向量機SVMs,三種資料探勘方法進行分類學生數學成就,再以Weka軟體常用適切度評估分類性能。從這三種資料探勘的方式找到最適合用於分類學生TIMSS 2015數學成就的方式是分類與回歸樹CART。透過分類與回歸樹CART獲得高成就組學生共同特徵有「數學學習自信」與「家庭教育資源」這兩項。日後可以進一步的研究和應用在參與TIMSS的各個國家上,TIMSS研究不僅涉及數學成績,還評估學生的科學和閱讀技能。因此,可以對不同的教育領域進行研究,以找出與課程成績相關的因素。
摘要(英) Mathematics is the mother of science, which illustrates the importance of mathematics. From the regular international large-scale achievement assessments, we can see that the average achievement of Taiwanese students in mathematics is high, but the gap in mathematics achievement of students is increasing. This is a serious education problem for us. It is very important to understand which variables make students achieve high mathematics achievement. Therefore, this research aims to use the data in the TIMSS 2015 database to classify the high-achievement group and low-learning group of students in TIMSS 2015 mathematics achievement. The study sample consisted of 5711 Taiwanese eighth grade students who participated in the 2015 TIMSS. In the data analysis, three data exploration methods including Decision Tree, Classification and regression tree, and Support Vector Machines are used to classify students′ mathematical achievements, and then the classification performance is evaluated appropriately by Weka software. From these three data exploration methods, the most suitable method for classifying students′ TIMSS 2015 mathematics achievements is Classification and regression tree. Through Classification and regression tree, the common characteristics of high-achievement students are "Students Confident in Mathematics" and "Home Educational Resources". In the future, it can be further researched and applied in various countries participating in TIMSS. TIMSS research not only involves mathematics performance, but also evaluates students′ science and reading skills. Therefore, different education fields can be studied to find out the factors related to course performance.
關鍵字(中) ★ TIMSS
★ 數學成就
★ 教育資料探勘EDM
★ 數學學習自信
★ 家庭教育資源
關鍵字(英) ★ TIMSS
★ mathematics achievement
★ educational data mining(EDM)
★ students confident in mathematics
★ home educational resources
論文目次 目錄
中文摘要 i
英文摘要 ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 vii
一、緒論 1
1-1 研究動機 1
1-2 研究問題 3
1-3 研究限制 4
1-4 主要名詞釋義 4
二、文獻探討 6
2-1 資料探勘 6
2-1-1 檢驗方式 7
2-2 資料探勘用於教育 10
2-2-1 決策樹(DT) 11
2-2-2 分類與回歸樹(CART) 11
2-2-3 支持向量機(SVMs) 12
2-2-4 十倍交叉驗證方法 12
2-3 國際大型資料庫與數學成就 13
2-4 教育資料探勘結合國際大型資料庫的研究 14
三、研究方法 18
3-1 研究設計 18
3-2 研究對象 19
3-3 研究工具 19
3-4 資料蒐集方法 23
3-5 資料分析方法 24
四、研究結果與分析 29
4-1 臺灣八年級學生變項與數學成就之敘述統計 29
4-1-1 學生變項與數學成就分群人數及百分比 29
4-1-2 高成就組與低學習組在七個變項中的平均分數 30
4-2 三種WEKA軟體分類性能之適切度分析 31
4-3 資料探勘分類結果分析 35
4-3-1 決策樹DT分類結果 35
4-3-2 分類與回歸樹CART分類結果 36
4-3-3 支持向量機SVMs分類結果 36
五、討論與結論 38
5-1 研究結果討論 38
5-1-1 資料探勘適切度評估分類性能 38
5-1-2 學生變項與數學成就之關係 38
5-1-3 方法學之突破與建議 39
5-2 結論與建議 40
5-2-1 本研究之結論 40
5-2-2 建議 41
5-2-3 研究總結與本研究之重要性 42
參考文獻 44
參考文獻 參考文獻
中文部分
任宗浩、陳冠銘(2016)。研究設計與資料分析。載於張俊彥(主編),國際數學與科學教育成就趨勢調查2015國家報告(頁44-60)。臺北市:國立臺灣師範大學科學教育中心。
任宗浩、譚克平、張立民(2011)。二階段分層叢集抽樣的設計效應估計:以 TIMSS 2007調查研究為例。教育科學研究期刊,56(1),33-65。
吳勁甫(2015)。校長領導,學校氣氛對學生閱讀素養影響之多層次分析:以 PISA 2012 台灣之資料為例。
林志哲(2007)。以結構方程模型驗證期望、價值與數學成就的關係。教育學刊,29,103-127。
林素微(2018)。數學課室教師支持與學生數學素養關聯探討:以 PISA 2012 臺灣資料為例。臺灣數學教師,39(1),1-17。doi: 10.6610/TJMT.201804_39(1).0001
張春興(2006)。張氏心理學辭典(重訂版)。台北市:東華。
曹博盛(2016)。八年級學生數學成就及相關因素探討。載於張俊彥(主編),國際數學與科學教育成就趨勢調查2015國家報告(頁205-280)。臺北市:國立臺灣師範大學科學教育中心。
陳敏瑜、游錦雲(2013)。以TIMSS資料檢視能力信念與任務價值對臺灣八年級學生數學成就之影響。教育科學研究期刊,58(3),153-186。
黃嘉莉、葉怡芬、許瑛玿、曾元顯(2017)。取得中學教職的關鍵因素:運用決策樹探勘師資培育歷程。教育科學研究期刊,62(2),89-123。
臺灣PISA國家研究中心(2014)。臺灣PISA2012精簡報告。2014年12月20日。取自http://pisa.nutn.edu.tw/download_tw.htm
鄭永福、許瑛玿(2017)。應用決策樹探索大學以上畢業生薪資之影響因素。教育科學研究期刊,62(2),125-151。
西文部分
Aksoy, E., Narli, S., & Idil, F. H. (2016). Using data mining techniques examination of the middle school students’ attitude towards mathematics in the context of some variables. International Journal of Education in Mathematics Science and Technology, 4(3), 210–228.
Aksu, G., & Güzeller, C. O. (2016). Classification of PISA 2012 mathematical literacy scores using decision-tree method: Turkey sampling. Egitim ve Bilim, 41(185), 101-122.
Aldowah, H., Al-Samarraie, H., & Fauzy, W. M. (2019). Educational data mining and learning analytics for 21stcentury higher education: A review and synthesis. Telematics and Informatics, 37, 13–46.
Alpaydın, E. (2004). Introduction to machine learning. Cambridge: The MIT Press.
Arends, F., Winnaar, L., & Mosimege, M. (2017). Teacher classroom practices and Mathematics performance in South African schools: A reflection on TIMSS 2011. South African Journal of Education, 37(3), 1-11.
Askin, O. E., & Gokalp, F. (2013). Comparing the predictive and classification performances of logistic regression and neural networks: a case study on timss 2011. Procedia-Social and Behavioral Sciences, 106, 667-676.
Bradley, A. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. New York, NY: Chap-man & Hall.
Brese, F. & Mirazchiyski, P. (2010). Measuring students’ family background in large-scale education studies. Paper presented in the 4th IEA International Research Conference. July 1 – 3. Gothenburg, Sweden. Retrieved from http://www.iea.nl/irc-201.html.
Chakrabarti, D., Kumar, R., & Tomkins, A. (2006). Evolutionary clustering. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 554-560).
Chen, J., Zhang, Y., Wei, Y., & Hu, J. (2019). Discrimination of the contextual features of top performers in scientific literacy using a machine learning approach. Research in Science Education. Retrieved from https://doi.org/10.1007/s11165-019-9835-y
Chen, X. W., & Liu, M. (2005). Prediction of protein–protein interactions using random decision forest framework. Bioinformatics, 21(24), 4394-4400.
Cortez, P., & Silva, A. (2008). Using data mining to predict secondary school student performance. In A. Brito & J. Teixeira (Eds.), Proceedings of 5th Annual Future Business Technology Conference (pp. 5–12).
Davis, J., & Goadrich, M. (2006, June). The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning (pp. 233–240).
Dejaeger, K., Goethals, F., Giangreco, A., Mola, L., & Baesens, B. (2012). Gaining insight into student satisfaction using comprehensible data mining techniques. European Journal of Operational Research, 218(2), 548–562.
Depren, S. K., Aşkın, Ö. E., & Öz, E. (2017). Identifying the classification performances of educational data mining methods: A case study for TIMSS. Educational Sciences: Theory & Practice, 17(5), 1605–1623.
Donner, A., & Klar, N. (1996). The statistical analysis of kappa statistics in multiple samples. Journal of Clinical Epidemiology, 49(9), 1053–1058.
Dutt, A., Ismail, M. A., & Herawan, T. (2017). A systematic review on educational data mining. IEEE Access, 5, 15991–16005.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-37.
Ferguson, R. (2012). The state of learning analytics in 2012: A review and future challenges. Knowledge Media Institute, Technical Report KMI-2012-01.
Fischer, C., Fishman, B., Dede, C., Eisenkraft, A., Frumin, K., Foster, B., …Levy, A. J. (2018). Investigating relationships between school context, teacher professional development, teaching practices, and student achievement in response to a nationwide science reform. Teaching and Teacher Education, 72, 107-121.
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59–109.
Fung, F., Tan, C. Y., & Chen, G. (2018). Student engagement and mathematics achievement: Unraveling main and interactive effects. Psychology in the Schools, 55(7), 815-831.
Gabriel, F., Signolet, J., & Westwell, M. (2018). A machine learning approach to investigating the effects of mathematics dispositions on mathematical literacy. International Journal of Research & Method in Education, 41(3), 306–327.
Grønmo, L. S., Lindquist, M., Arora, A., & Mullis, I. V. (2015). TIMSS 2015 Mathematics Framework. In I.V. S. Mullis & M.O. Martin (Eds). TIMSS 2015 Assessment Frameworks (pp.11-27). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/frameworks.html
Hammouri, H. (2004). Attitudinal and motivational variables related to mathematics achievement in Jordan: Findings from the Third International Mathematics and Science Study (TIMSS). Educational research, 46(3), 241-257.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
Haykin, S. (1999). Neural Networks: A comprehensive Foundation. Upper Saddle River-N.J.: Prentice Hall International.
He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90–102.
Hooper, M., Mullis, I. V., & Martin, M. O. (2015). TIMSS 2015 context questionnaire framework. In I.V. S. Mullis & M.O. Martin (Eds). TIMSS 2015 Assessment Frameworks (pp.61-82). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/frameworks.html
Hwang, J., Choi, K. M., Bae, Y., & Shin, D. H. (2018). Do teachers’ instructional practices moderate equity in mathematical and scientific literacy? An investigation of the PISA 2012 and 2015. International Journal of Science and Mathematics Education, 16(1), 25-45.
Kalmegh, S. (2015). Analysis of WEKA data mining algorithm REP Tree, Simple CART and Random Tree for classification of Indian news. International Journal of Innovative Science, Engineering & Technology, 2(2), 438-446.
Koedinger, K. R., D′Mello, S., McLaughlin, E. A., Pardos, Z. A., & Rose, C. P. (2015). Data mining and education. Wiley Interdisciplinary Reviews: Cognitive Science, 6(4), 333-353.
Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students’ performance in distance learning using machine learning techniques. Applied Artificial Intelligence, 18(5), 411-426.
Kupari, P. (2006). Student and school factors affecting Finnish mathematics achievement: Results from TIMSS 1999 data. Contexts of learning mathematics and science, Lessons learned from TIMSS, 127-14.
Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data: An introduction to data mining. John Wiley & Sons.
Lee, O. (2005). Science education with English language learners: Synthesis and research agenda. Review of Educational Research, 75(4), 491–530.
Liu, S., & Meng, L. (2010). Re–examining factor structure of the attitudinal items from TIMSS 2003 in cross–cultural study of mathematics self–concept. Educational Psychology, 30(6), 699–712.
Liu, X., & Whitford, M. (2011). Opportunities-to-learn at home: Profiles of students with and without reaching science proficiency. Journal of Science Education and Technology, 20(4), 375-387.
López-Martín, E., Expósito-Casas, E., Molina, E. C., & Muñoz, I. A. (2018). What does PISA tell us about the teaching and learning of sciences? An approach through decision trees. Revista de Educación, 382, 133-161.
Ma, X., & Wang, J. (2001). A confirmatory examination of Walberg′s model of educational productivity in student career aspiration. Educational Psychology, 21(4), 443-453.
Martin, M. O., Mullis, I. V. S., & Hooper, M. (Eds.). (2016). Methods and Procedures in TIMSS 2015. Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/publications/timss/2015-methods.html
Martin, M. O., Mullis, I. V., & Foy, P. (2015). TIMSS 2015 assessment design. In I.V. S. Mullis & M.O. Martin (Eds). TIMSS 2015 Assessment Frameworks (pp.85-98). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/frameworks.html
Masci, C., Johnes, G., & Agasisti, T. (2018). Student and school performance across countries: A machine learning approach. European Journal of Operational Research, 269(3), 1072-1085.
McConney, A., & Perry, L. B. (2010). Socioeconomic status, self-efficacy, and mathematics achievement in Australia: A secondary analysis. Educational Research for Policy and Practice, 9(2), 77-91.
Morgan, P. L., Farkas, G., Hillemeier, M. M., & Maczuga, S. (2009). Risk factors for learning-related behavior problems at 24 months of age: Population-based estimates. Journal of Abnormal Child Psychology, 37(3),401–413.
Mullis, I. V. S., Cotter, K. E., Centurino, V. A. S., Fishbein, B. G., & Liu, J. (2016). Using Scale Anchoring to Interpret the TIMSS 2015 Achievement Scales. In M. O. Martin, I. V. S. Mullis, & M. Hooper (Eds.), Methods and Procedures in TIMSS 2015 (pp. 14.1-14.47). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timss.bc.edu/publications/timss/2015-methods/chapter-14.html
Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnut Hill, MA: Boston College.
Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in mathematics. Retrieved from Boston College, TIMSS & PIRLS International Study Center website: http://timssandpirls.bc.edu/timss2015/international-results/
Neuschmidt, O., Barth, J., & Hastedt, D. (2008). Trends in gender differences in mathematics and science (TIMSS 1995–2003). Studies in Educational Evaluation, 34(2), 56–72.
Olson, D. L. (2007). Data mining in business services. Service Business, 1(3), 181-193.
Qiao, X., & Jiao, H. (2018). Data mining techniques in analyzing process data: A didactic. Frontiers in psychology, 9, 2231.
Quinlan, J. R. (1994). C4.5 programs for machine learning. San Mateo-California: Morgan Kaufmann Publishers.
Razi, M., & Athappilly, K. (2005). A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Systems with Applications, 29(1), 65–74.
Reynolds, A. J., & Walberg, H. J. (1991). A structural model of science achievement. Journal of educational psychology, 83(1), 97.
Reynolds, A. J., & Walberg, H. J. (1992). A structural model of science achievement and attitude: An extension to high school. Journal of educational Psychology, 84(3), 371.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135-146.
Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618.
Schreiber, J. (2002). Scoring above the international average: A logistic regression model of the TIMSS advanced mathematics exam. Multiple Linear Regression Viewpoints, 28(1), 22–30.
Shahiri, A. M., & Husain, W. (2015). A review on predicting student’s performance using data mining techniques. Procedia Computer Science, 72, 414-422.
Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M. (1998). Structural risk minimization over data-dependent hierarchies. The Institute of Electrical and Electronics Engineers (IEEE) Transactions on Information Theory, 44(5), 1926-1940.
She, H. C., Lin, H. S., & Huang, L. Y. (2019). Reflections on and implications of the programme for international student assessment 2015 performance of students in Taiwan: The role of epistemic beliefs about science in scientific literacy. Journal of Research in Science Teaching, 56(3), 1-32.
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B (Methodological), 36(2), 111–147.
Topçu, M., Erbilgin, E., & Arıkan, S. (2016). Factors predicting Turkish and Korean students’ science and mathematics achievement in TIMSS 2011. Eurasia Journal of Mathematics, Science and Technology Education, 12(7), 1711–1737.
Turanoğlu-Bekar, E., Ulutagay, G., & Kantarcı-Savaş, S. (2016). Classification of thyroid disease by using data mining models: A comparison of decision tree algorithms. Oxford Journal of Intelligent Decision and Data Sciences, 2016(2), 13–28.
Varshney, P. K., & Arora, M. K. (2004). Advanced image processing techniques for remotely sensed hyperspectral data. Berlin-Heidelberg: Springer Science & Business Media.
Walberg, H. J. (1980). A psychological theory of educational productivity.
Wang, C. L., & Liou, P. Y. (2017). Students’ motivational beliefs in science learning, school motivational contexts, and science achievement in Taiwan. International Journal of Science Education, 39(7), 898-917.
Wang, C. L., & Liou, P. Y. (2018). Patterns of motivational beliefs in the science learning of total, high-, and low-achieving students: Evidence of Taiwanese TIMSS 2011 data. International Journal of Science and Mathematics Education, 16(4), 603-618.
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82.
Yıldırım, Ö., & Demir, S. B. (2014). The examınatıon of teacher and student effectiveness at TIMSS 2011 Science and math scores using multi level models. Pakistan Journal of Statistics, 30(6), 1211–1218.
Young, D. J., Reynolds, A. J., & Walberg, H. J. (1996). Science achievement and educational productivity: A hierarchical linear model. The Journal of Educational Research, 89(5), 272-278.
Zimmerman, R. K., Balasubramani, G. K., Nowalk, M. P., Eng, H., Urbanski, L., … Wisniewski, S. R. (2016). Classification and regression tree (CART) analysis to predict influenza in primary care patients. BMC Infectious Diseases, 16(1), 503-513.
指導教授 張立杰(Li-Chieh Chang) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明