博碩士論文 106221005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:35.175.191.168
姓名 阮毓庭(Yu-Ting Juan)  查詢紙本館藏   畢業系所 數學系
論文名稱
(Three-dimensional Geometry Reconstruction of Mouse Liver from MR Images Using K-means Method with Confusion Component Removing)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-8-31以後開放)
摘要(中) 肝臟是人體的重要器官,負責許多生理所需功能且肝病一直是台灣十大死因之一。早期原發性肝癌很難被發現,因為最初的症狀通常不明顯。想要控制肝癌,除非在腫瘤非常小的情況下就已經發現,否則將難以控制病情。因此,我們希望建立肝臟結構的數值模擬,包括血管和肝臟結構。在模擬之前,我們需先將肝臟從影像中分割出來。
醫學圖像通常包含複雜的訊息,圖像分割也是許多醫學應用中的挑戰。精確切割對於模擬是有必要的。但尋找照MRI的受試者並不是一件簡單的事情,所以在各方考量下,我們使用小老鼠的肝影像進行模擬。然而,MR影像中的小鼠肝臟邊界通常不清楚,傳統edge-based切割方法並不合適。在本文中,我們提出了一種方法,利用MRI的T1,T2和T1 C+(Primovist)的成像差異先將不需要的組織器官移除並得到一個新的影像,再使用k-means方法進行分割,結果顯示準確度確實有所改善。未來,我們期望能實際應用在人體的數值模擬。
摘要(英) Liver diseases are always on the list of the top 10 causes of death in Taiwan. Early primary liver cancer is difficult to detect because the initial symptoms are usually not obvious. But unless it is discovered when the tumor is very small, liver cancer is difficult to control. therefore, we desire to build a numerical simulation of the liver structure, including blood vessel topography, liver surface. Before the simulation, we should segment liver from MR images.
Medical images mostly contain complicated structures, and image segmentation is a key task in many medical applications. Their precise segmentation is necessary for simulation. Since seeking the subject for scanning MRI isn′t a simple matter, we use a mouse liver image to do simulation. However, mouse liver boundaries in MR images are usually unclear, the traditional edge-based method for segmentation is unsuitable. In this paper, we propose a way that creating a new image is combined T1-weighted (T1), T2-weighted MRI (T2) and T1-weighted MRI with contrast enhancement (T1 C+(Primovist)) image. We compare the image which doing confusion component removing with the original image after segmentation using k-means method afterward. The result presents that accuracy is improved. In the future, we look forward to applying on the numerical simulation.
關鍵字(中) ★ 核磁共振
★ 影像處理
關鍵字(英) ★ k-means
★ MRI
論文目次 Tables........................................... viii
Figures .......................................... ix
1 Introduction . .................................... 1
2 Relatedwork . ................................... 5
2.1 Methodologyofsegmentation......................... 5
2.2 MethodologyofValidation........................... 9
3 Proposedsolutionalgorithm . ......................... 10
3.1 K-meansmethod................................ 11
3.2 Sampleexamplewithpokercard....................... 14
3.3 Confusioncomponentremoving........................ 16
3.4 Connectedcomponentlabeling........................ 19
4 Experimentalresultsanddiscussions . .................... 20
4.1 Datasetinformation.............................. 20
4.2 Experimentalresults.............................. 21
4.2.1 Mousebloodvesselsimage...................... 21
4.2.2 Mouseliverimage........................... 22
4.2.3 Mouseliverimagesusingdifferentmethodswithconfusioncompo-
nentremoving............................. 27
4.2.4 Three-dimensionalgeometryreconstruction............. 31
5 Conclusions . .................................... 32
References ......................................... 33
參考文獻 [1] L.N.Vu,J.N.Morelli,andJ.Szklaruk.BasicMRIfortheliveroncologistsand surgeons. Journal ofHepatocellularCarcinoma, 5:37,2017.
[2] 13 -liverandgallbladder.InP.M.TreutingandS.M.Dintzis,editors, Comparative AnatomyandHistology, pages193 201.AcademicPress,2012.
[3] W. BurgerandM.J.Burge.Regionsinbinaryimages.In Digital ImageProcessing, pages 209–252.Springer,2016.
[4] D. L.Pham,C.Xu,andJ.L.Prince.Currentmethodsinmedicalimageseg enta-tion. AnnualReviewofBiomedicalEngineering, 2(1):315–337,2000.
[5] GodfreyNHounsfield.Computerizedtransverseaxialscanning(tomography):Part 1. descriptionofsystem. The Britishjournalofradiology, 46(552):1016–1022,1973.
[6] A. Kumar,D.Welti,andR.R.Ernst.ImagingofmacroscopicobjectsbyN R fourier zeugmatography. Naturwissenschaften, 62(1):34,1975.
[7] L. Dora,S.Agrawal,R.Panda,andA.Abraham.State-of-the-artmethodsforbrain tissue segmentation:Areview. IEEE ReviewsinBiomedicalEngineering, 10:235–249,
2017.
[8] N. A.Mohamed,M.N.Ahmed,andA.Farag.Modifiedfuzzyc-meaninmedical
image segmentation.In Proceedingsofthe20thAnnualInternationalConferenceof
the IEEE EngineeringinMedicineandBiologySociety.Vol.20BiomedicalEng-ineeringTowardstheYear2000andBeyond(Cat.No.98CH36286), volume3,pages
1377–1380. IEEE,1998.
[9] S. Yazdani,R.Yusof,A.Karimian,M.Pashna,andA.Hematian.Imagesegmenta-
tion methodsandapplicationsinMRIbrainimages. IETE TechnicalReview, 32(6):
413–427, 2015.
[10] B. Fischl,D.H.Salat,E.Busa,M.Albert,M.Dieterich,C.Haselgrove,A.Van
Der Kouwe,R.Killiany,D.Kennedy,S.Klaveness,etal.Wholebrainsegmentation:
automated labelingofneuroanatomicalstructuresinthehumanbrain. Neuron, 33(3):
341–355, 2002.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2019-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明