博碩士論文 106221007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.231.228.109
姓名 柯智傑(Chih-Chieh Ko)  查詢紙本館藏   畢業系所 數學系
論文名稱
(A Full Space Lagrange-Newton Algorithm for Nonlinear Optimal Control Problems)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-8-31以後開放)
摘要(中) 在物理學和工程學中具有廣泛應用的軌跡優化問題可以在某種形式的連續時間最優控制問題中進行數學建模。在對最優控制問題進行離散化之後,我們使用拉格朗日 - 牛頓方法求解得到的參數約束優化問題。在這種方法中,我們將拉格朗日乘數引入目標函數,然後通過找到一階必要條件(KKT條件)的臨界解來求解約束優化問題。我們考慮兩類拉格朗日 - 牛頓方法:一類是全空間算法,另一類是簡化空間算法。全空間算法同時更新控制,狀態和拉格朗日乘數。另一方面,縮減空間算法按順序更新這些變量。在這項研究中,我們用數字表示,對於Hessian矩陣的構造,分析方法的計算時間小於有限差分法和BFGS方法的計算時間。值得注意的是,全空間拉格朗日 - 牛頓算法比簡化空間拉格朗日 - 牛頓算法更快,特別是對於精細網格情況。
摘要(英) The trajectory optimization problem with a wide range of applications in physics and engineering can be modeled mathematically in some form of continuous time optimal control problems. After discretizing the optimal control problem we solve the resulting parameter constrained optimization problem by using the Lagrange-Newton method. In this method, we introduce the Lagrange multiplier to the objective function and then solve the constrained optimization problem by finding the critical solution of the first-order necessary condition (KKT condition). We consider two classes of Lagrange-Newton method: one is the full space algorithm and the other is the reduced space algorithm. The full space algorithm updates the control, state, and Lagrange multipliers at the same time. On the other hand, the reduced space algorithm updates those variables sequentially. In this study, we show numerically that for the construction of the Hessian matrix, the computing time for the analytical method is less than that for the finite difference method and the BFGS method. Remarkably, the full space Lagrange-Newton algorithm is faster than the reduced space Lagrange-Newton algorithm, especially for refined mesh cases.
關鍵字(中) ★ 非線性 關鍵字(英) ★ nonlinear
論文目次 Contents
Tables........................................... ix
Figures .......................................... x
1 Introdution . .................................... 1
2 Optimalcontrolproblemanddirecttranscription . ............ 3
2.1 Anintroductiontooptiamlcontrolproblems................. 3
2.1.1 Definitionofvariable.......................... 3
2.1.2 Mathematicalmodel.......................... 4
2.1.3 Theotherforms............................ 4
2.1.4 Multi-stageproblems.......................... 5
2.1.5 Indirectanddirectmethods...................... 6
2.2 Directtracnscriptionemployingcollectionmethod.............. 7
2.2.1 Discretizationandtransformationforfreefianltimephase..... 7
2.2.2 Numericalintegrationofstateequations............... 8
2.2.3 Collocationmethods.......................... 9
2.2.4 Nonlinearprogrammingproblems................... 12
3 Lagrange-Newtonalgorithmfornonlinearprogramming . ........ 13
3.1 Anintroductiontoparameteroptimizationproblems............ 13
3.1.1 KKTsystem.............................. 13
3.2 Thefull-spacealgorithm............................ 15
3.2.1 Descriptionofalgorithm........................ 15
3.2.2 KKTmatrixconstruction....................... 16
3.2.3 Constructinghessianmatrixbydifferentiation-by-handmethod.. 19
3.3 Thereduced-spacealgorithm.......................... 24
4 Numericalresults . ................................ 29
4.1 Testcases.................................... 29
4.1.1 Problemcharacteristiclist....................... 29
4.1.2 Descriptionoftestcase........................ 30
4.2 Performance................................... 40
4.2.1 ComparisonoftheDYHmethod,theFDmethod,andtheBFGS
method................................. 40
4.2.2 Comparisonofthefullspacealgorithmandthereducedspaceal-
gorithm ................................. 44
5 Conclusion . ..................................... 46
References ......................................... 47
參考文獻 [1] I. M.RossandM.Karpenko.Areviewofpseudospectraloptimalcontrol:From
theory toflight. AnnualReviewsinControl, 36(2):182–197,2012.
[2] ??, ???, ???, etal. Optimal ControlTheoryMethodandApplications. ?
??????, 2016.
[3] Kamesh SubbaraoandBrandonMShippey.Hybridgeneticalgorithmcollocation
methodfortrajectoryoptimization. Journal ofGuidance,Control,andDynamics,
32(4):1396–1403, 2009.
[4] John EDennisJrandRobertBSchnabel. Numericalmethodsforunconstrained
optimization andnonlinearequations, volume16.Siam,1996.
[5] M. Benzi,G.H.Golub,andJörgLiesen.Numericalsolutionofsaddlepointproblems.
ActaNumerica, 14:1–137,2005.
[6] J. T.Betts.Surveyofnumericalmethodsfortrajectoryoptimization. Journal of
GuidanceControlandDynamics, 21(2):193–207,1998.
[7] O. VonStrykandR.Bulirsch.Directandindirectmethodsfortrajectoryoptimiza-
tion. AnnalsofOperationsResearch, 37(1):357–373,1992.
[8] J. J.Leader. NumericalAnalysisandScientificComputation. Pearson,2004.
[9] M. Kelly.Anintroductiontotrajectoryoptimization:Howtodoyourowndirect
collocation. SIAM Review, 59(4):849–904,2017.
[10] J. NocedalandS.J.Wright. NumericalOptimization. Springer-Verlag,2006.
[11] M. Avriel. NonlinearProgramming:AnalysisandMethods. CourierCorporation,
2003.
[12] J. T.Betts. PracticalMethodsforOptimalControlandEstimationUsingNonlinear
Programming. SIAM,2010.
[13] D. G.Hull. Optimal ControlTheoryforApplications. SpringerScience&Business
Media, 2013.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明