博碩士論文 106221023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.80.5.157
姓名 黃耀平(Yao-Ping Huang)  查詢紙本館藏   畢業系所 數學系
論文名稱
(A Nonlinearly Preconditioned Full-space Lagrange-Newton Method for Low Thrust Orbit Transfer Optimization Problems)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing
★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations
★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations
★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method
★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation
★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems
★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-8-31以後開放)
摘要(中) 在太空任務中電力推進系統被稱為低推力推進系統。最近,在大多數的太空
任務中傳統化學推進系統都改變為電力推進系統,因此低推力問題變得更加普
遍。而低推力軌道轉移的優化和設計一直是太空探索任務中的難題。針對這些問
題, 我們提出了A Nonlinearly Preconditioned Full-space Lagrange-Newton Method
該方法一種基於右非線性預處理技術分別通過替換非線性函數或改變未知數來
處理非線性,但它需要在原始系統的子集上進行內部迭代,這導致每步的額外成
本。因此,為了有效地提高效率,不需要在每次牛頓迭代上調用非線性預處理,
尤其是當近似解接近收斂時。數值計算驗證了該方法的有效性。
iv
摘要(英) In space missions, the low-thrust propulsion system is another name for the
electrically-powered spacecraft propulsion system. Recently, traditional chemical
propulsion system change to the electrically-powered spacecraft propulsion system
in the most space missions, so the low-thrust problems become more common. The
optimization and design of low-thrust orbit transfer always have been a difficult
problem in space exploration missions. For these problems, we propose a nonlinearly
preconditioned Full-space Lagrange-Newton Method. The method is kind of
the right nonlinear preconditioning techniques deals with nonlinearities by changing
unknowns or replacing nonlinear functions, respectively. Owing to it needs inner
iterations working on subsets of the original system, which lead to additional cost
per step. Therefore, for the purpose of effectively improve efficiency nonlinear preconditioner
require not to be invoked on every Newton iteration, especially when
the approximate solution close to the typical solution. The numerical result verifies
the effectiveness of the method.
關鍵字(中) ★ 非線性 關鍵字(英) ★ Nonlinearly
論文目次 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Low thrust optimal orbit transfer problems . . . . . . . . . . . . . . 3
2.1 Mathematical model of low thrust optimal orbit transfer problems . . 3
2.2 Indirect methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Indirect method formulation . . . . . . . . . . . . . . . . . . . 6
2.2.2 Applications: lunar launch problem . . . . . . . . . . . . . . . 8
2.3 Constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 The quadratic penalty method . . . . . . . . . . . . . . . . . 11
2.3.2 The method of Lagrange multipliers . . . . . . . . . . . . . . 12
3 Nonlinear preconditioned full-space Lagrange-Newton method . . 13
3.1 Description of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Karush-Kuhn-Tucker Condition . . . . . . . . . . . . . . . . . . . . . 13
3.3 Nonlinear precondition . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Nonlinearly preconditioned full-space Lagrange Newton Algorithm . . 16
3.5 Lagrange-Newton method . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Newton step computation . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6.1 Merit Function . . . . . . . . . . . . . . . . . . . . . . . . . . 19
vii
3.6.2 Line-search methods . . . . . . . . . . . . . . . . . . . . . . . 20
4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Initial guess and typical solution . . . . . . . . . . . . . . . . . . . . 24
4.3 The Full-space Lagrange-Newton . . . . . . . . . . . . . . . . . . . . 27
4.4 Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Compare with Matlab optimization toolbox . . . . . . . . . . . . . . 31
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
參考文獻 [1] J. T. Betts. Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. SIAM, 2010.
[2] Sven Schäff. Low-thrust multi-revolution orbit transfers. In Space Engineering,
pages 337–367. Springer, 2016.
[3] T. Haberkorn, P. Martinon, and J. Gergaud. Low thrust minimum-fuel orbital
transfer: a homotopic approach. Journal of Guidance, Control, and Dynamics,
27:1046–1060, 2004.
[4] S. Lee, P. von Ailmen, W. Fink, A.F. Petropoulos, and R. J. Terrile. Design and
optimization of low-thrust orbit transfers. In 2005 IEEE Aerospace Conference,
pages 855–869. IEEE, 2005.
[5] J.C Bastante, A Caramagno, L.F Peñı́n, M Belló-Mora, and J Rodrı́guez-
Canabal. Low thrust transfer optimisation of satellites formations to heliocentric
earth trailing orbits through a gradient restoration algorithm. 2004.
[6] G. A. Rauwolf and V. L. Coverstone-Carroll. Near-optimal low-thrust orbit
transfers generated by a genetic algorithm. Journal of Spacecraft and Rockets,
33:859–862, 1996.
[7] J. T. Betts. Survey of numerical methods for trajectory optimization. Journal
of Guidance Control and Dynamics, 21(2):193–207, 1998.
[8] D. G. Luenberger, Y. Ye, et al. Linear and Nonlinear Programming, volume 2.
Springer, 1984.
[9] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.
[10] J. T. Betts. Very low-thrust trajectory optimization using a direct SQP method.
Journal of Computational and Applied Mathematics, 120:27–40, 2000.
[11] D. G. Hull. Optimal Control Theory for Applications. Springer-Verlag, 2003.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明