博碩士論文 106222001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.21.248.47
姓名 張瑋晟(WEI-CHENG JHANG)  查詢紙本館藏   畢業系所 物理學系
論文名稱 超導量子干涉元件製作
(Fabrication of Superconducting Quantum Interference Device)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為★ 單一超導量子位元控制與狀態讀取
★ 工程化超導電路上三維腔量子電動力學系統★ Characterizing single-qubit gate fidelity on superconducting qubits
★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator★ 超導雙量子位元電路的實現
★ Developing Flux-Driven Josephson Parametric Amplifer★ 全電子束微影製程的共平面波導與超導量子位元耦合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究目的為製作出超導量子干涉元件,並能控制製作出的元件之電阻值。元件有兩種設計,一種用於量測元件室溫電阻值和臨界電流等特性,另一種上面有共面波導結構用於微波量測。
元件的製作方法為黃光微影製程製作1 μm 以上結構,電子束微影製程製作1 μm以下結構,蒸鍍使用電子槍蒸鍍機台,約瑟夫森接面的製作方式為Dolan bridge 光阻結構、陰影蒸鍍和腔體內氧化。控制電阻的主要方法為利用慕尼黑工業大學物理系WMI 實驗室提出的P^(1/2)t rule;調整氧化壓力Pox 和氧化時間tox 來達到控制電阻的目的。
本文量測元件的電阻數據來完成P^(1/2)t rule 的擬合,量測元件電壓電流曲線圖(I-V Curve) 來確認元件的超導特性,量測磁通量影響通過超導線圈電流的關係確認元件組成超導線圈且受磁通量影響。
經過研究後我們可以製作出10 kΩ 以下的超導量子干涉元件,發現我們的元件有嚴重的臨界電流抑制現象,電阻越高的元件此現象越明顯。同時發現我們超導線圈的loop size 和設計圖上的設計有誤差,我們也找到了一些會影響我們實驗室製作超導元件成功率的因素。
摘要(英) The goal of this thesis is to produce superconducting quantum interference device(SQUID) and control the resistance of the device. We have two kinds of designs: one is used to measure resistance and critical current characteristics at room temperature, and the other with a coplanar waveguide structure is used for microwave measurement.
The production uses the photolithography process to produce the structure above 1 micron, and the electron beam lithography process to produce the structure below 1 micron, and electron gun evaporation process to produce thin aluminum film. The fabrication methods of the Josephson junction are Dolan bridge, shadow evaporation and oxidation in the evaporation cavity. The way of controlling the resistance is to use P^(1/2)t rule which proposed by WMI laboratory of the Physics Department of Technische Universität München; By adjusting the oxidation pressure Pox and oxidation time tox to achieve the purpose of controlling the resistance.
This thesis measures the resistance data of the SQUID to fit P^(1/2)t rule, measures I-V Curve of SQUID to confirm the superconducting characteristics of the devices, and measuring the effect of magnetic flux on superconducting current confirms that the devices are affected by the magnetic flux and compose the superconducting coil.
In our study, we can produce SQUID below 10 kΩ. We found that our devices have serious critical current suppression. The higher the resistance is, the more serious the
phenomenon is. At the same time, we found that we have an error between loop size of SQUID and design. we also found some factors that affect the success rate of our sample
fabrication.
關鍵字(中) ★ 超導量子干涉元件
★ 製程
關鍵字(英)
論文目次 摘要......................xiii
Abstract...............................................xv
誌謝...................................................xvii
目錄...................................................xix
圖目錄.................................................xxi
表目錄.................................................xxiii
一、緒論...............................................1
二、理論背景...........................................3
2.1 超導體特性.........................................3
2.2 約瑟夫森接面(josephson junction)...................3
2.2.1 特徵能量(Characteristic energies)................5
2.2.2 電流-電壓曲線(I-V Curve).........................6
2.3 直流超導量子干涉元件................................7
2.4 P1/2t rule.........................................8
2.5 理論應用...........................................9
三、研究內容與方法......................................11
3.1 超導量子干涉元件製作—大尺度結構部分..................12
3.1.1 黃光微影製程......................................13
3.1.2 電子槍蒸鍍........................................13
3.1.3 鋁的濕式蝕刻......................................15
3.2 超導量子干涉元件製作—小尺度結構部分...................15
3.2.1 電子束微影製程....................................16
3.2.2 電子槍蒸鍍及氧化..................................19
3.3 元件量測............................................21
3.3.1 超導量子干涉元件電阻及臨界電流量測..................22
3.3.2 磁通量影響超導量子干涉元件跨電壓量測................25
四、實驗數據分析.........................................27
4.1 元件形貌分析.........................................27
4.1.1 曝光劑量影響.......................................27
4.1.2 氧電漿清洗影響.....................................30
4.2 超導量子干涉元件電阻分析..............................31
4.2.1 超導量子干涉元件電阻_ 不同氧化時間...................32
4.2.2 超導量子干涉元件電阻_ 實驗室P1/2t rule 參數擬合......33
4.2.3 超導量子干涉元件電阻_ 不同接面面積...................34
4.3 超導量子干涉元件量測..................................35
4.3.1 臨界電流...........................................35
4.3.2 磁通量影響電流......................................37
4.4 其餘影響因素..........................................38
五、結論.................................................41
參考文獻.................................................43
附錄A 實驗參數...........................................45
A.1 黃光微影參數.........................................45
A.2 電子束微影參數.......................................46
A.3 超導量子干涉元件蒸鍍及氧化參數........................46
附錄B 裝置使用說明.......................................47
B.1 電子槍蒸鍍機台.......................................47
參考文獻 [1] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, vol. 21, no. 6, pp. 467–488, Jun. 1982, issn: 00207748. doi: 10.1007/BF02650179. [Online]. Available: https://link.springer.com/article/10.1007/BF02650179.
[2] P. Benioff, “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines,” Journal of Statistical Physics, vol. 22, no. 5, pp. 563–591, May 1980, issn: 00224715. doi: 10.1007/BF01011339. [Online]. Available: https://link.springer.com/article/10.1007/BF01011339.
[3] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable superconducting
processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019, issn: 14764687. doi: 10.1038/s41586- 019- 1666- 5. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5.
[4] G. AI Quantum, “Hartree-Fock on a superconducting qubit quantum computer,” Science, vol. 369, no. 6507, pp. 1084–1089, Aug. 2020, issn: 10959203. doi: 10.1126/science.
abb9811. arXiv: 2004.04174. [Online]. Available: http://science.sciencemag.org/.
[5] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, “Coherent control of macroscopic quantum states in a single-Cooper-pair box,” Nature, vol. 398, no. 6730, pp. 786–788, Apr. 1999, issn: 00280836. doi: 10.1038/19718. arXiv: 9904003 [cond-mat]. [Online]. Available: https://www.nature.com/articles/19718.
[6] A. Wallraff, D. I. Schuster, A. Blais, et al., “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature, vol. 431, no. 7005, pp. 162–167, Sep. 2004, issn: 00280836. doi: 10.1038/nature02851. [Online]. Available:
https://www.nature.com/articles/nature02851.
[7] B. Akademie and D. Wissenschaften, “Fabrication stability of Josephson junctions for superconducting qubits,” no. May, 2015.
[8] J. Effect, S. Electronics, R. Gross, and A. Marx, “Applied Superconductivity,” Tech. Rep.,
2007.
[9] J. E. Boggio, “The pressure dependence of the oxidation of aluminum at 298 °K,” Surface Science, vol. 14, no. 1, pp. 1–6, Mar. 1969, issn: 00396028. doi: 10.1016/0039-6028(69)
90041-7.
[10] D. Van Delft and P. Kes, “The discovery of superconductivity,” Physics Today, vol. 63,
no. 9, pp. 38–43, Sep. 2010, issn: 00319228. doi: 10.1063/1.3490499.
[11] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Physical Review, vol. 108, no. 5, pp. 1175–1204, Dec. 1957, issn: 0031899X. doi: 10.1103/PhysRev.
108.1175. [Online]. Available: https://journals.aps.org/pr/abstract/10.1103/ PhysRev.108.1175.
[12] 費曼, 費曼物理學講義III:量子力學(3)薛丁格方程式, The Science of Microfabrication, 吳. 高涌泉, Ed. 天下文化, 2018.
[13] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters, vol. 1, no. 7, pp. 251–253, Jul. 1962, issn: 00319163. doi: 10.1016/0031-9163(62)91369-0.
[14] V. Ambegaokar and A. Baratoff, “Tunneling between superconductors,” Physical Review Letters, vol. 10, no. 11, pp. 486–489, Jun. 1963, issn: 00319007. doi: 10 . 1103 /
PhysRevLett.10.486. [Online]. Available: https://journals.aps.org/prl/abstract/ 10.1103/PhysRevLett.10.486.
[15] E. Xie, “Optimized fabrication process for nanoscale Josephson junctions used in superconducting quantum circuits Master ’ s Thesis,” 2013.
[16] A. Varlamov and L. Aslamazov, “What is a SQUID?” In The Wonders of Physics, 2012, pp. 253–264. doi: 10.1142/9789814374170_0026. [Online]. Available: https://sites.google.com/site/squiddevices/home.
[17] Y. L. Wu, H. Deng, H. F. Yu, et al., “Fabrication of Al/AlOx/Al Josephson junctions and superconducting quantum circuits by shadow evaporation and a dynamic oxidation
process,” Chinese Physics B, vol. 22, no. 6, Jun. 2013, issn: 16741056. doi: 10.1088/1674-1056/22/6/060309.
[18] MicroChem, “PROCESSING GUIDELINES Substrate Preparation,” Tech. Rep. [Online]. Available: http://microchem.com/pdf/PMMA_Data_Sheet.pdf.
指導教授 陳永富(YONG-FU CHEN) 審核日期 2021-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明