博碩士論文 106222601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.224.32.86
姓名 Zainollah(Ahmad)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Sn納米粒子的超導電性和自旋極化
(Superconductivity and Spin Polarization in Sn Nanoparticles)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 通過具有單源室的熱蒸發方法製造Sn納米顆粒。 進行X射線衍射,利用晶體結構的表徵來確定生長的Sn納米顆粒的平均粒徑(樣品1和样品2分別為56nm和152nm)。 Sn的組成是使用通用結構分析系統(GSAS)程序分析X射線衍射圖案。
在我們的研究中,通過AC磁化率(χAC=χ′+iχ′′)測量超導抗磁屏蔽效應。 磁化率χ′(T)的溫度依賴性可以用Scalapino的表達式來描述,該表達式允許提取超導轉變溫度。 樣品1和样品2的臨界溫度分別為3.8K和3.6K。
在磁化率χ′(H)曲線的場依賴性中可以看到自旋極化效應,其可以通過衍生Langevin函數來描述,樣品1和样品2都顯示出超導性和自旋極化。
摘要(英) Sn nanoparticles are fabricated by a thermal evaporated method with single source chamber. X-ray diffraction performed the characterization of the crystal structure is utilized to determine the mean particle diameter (sample 1 and sample 2 is 56 nm and 152 nm, respectively) of the Sn nanoparticle as grown. The composition of Sn is an analysis of the X-ray diffraction pattern using the General Structure Analysis System (GSAS) program.
In our study, the superconducting diamagnetic screening effect was measured through AC magnetic susceptibility (χ_AC=χ^′+iχ′′). The temperature dependence of magnetic susceptibility χ′(T) can be described by Scalapino’s expression, which allows extracting the superconducting transition temperature. The critical temperature of sample 1 and sample 2 is 3.8 K and 3.6 K, respectively.
The spin polarization effects are seen in field dependence of the magnetic susceptibility χ′(H) curve, which can be described by derivative Langevin function, both of sample 1 and sample 2 revealing of superconductivity and spin polarization.
關鍵字(中) ★ Sn,X射線衍射,反磁性,自旋極化 關鍵字(英) ★ Sn, X-ray diffraction, diamagnetic, spin polarization
論文目次 摘要 i
ABSTRACT ii
Acknowledgments iii
TABLE OF CONTENT iv
List of Figure vi
List of Tables viii
Chapter 1. Introduction 1
1.1. Physical Properties of Tin 1
1.2. Superconductivity and Meissner 2
1.3. Spin Polarization of Nanoparticles 4
Chapter 2. Experimental 5
2.1. X-Ray Diffraction 5
2.2. Magnetic Measurement 7
Chapter 3. Crystalline Structure Analysis 10
3.1. Sample Fabrication 10
3.2. Sample Characterization 14
3.3. Crystallite Size 19
Chapter 4. Superconductivity of Tin 27
4.1. Temperature Dependence of The Magnetic Susceptibility 27
4.2. Field dependence of the magnetic susceptibility 32
4.3. Means Particle Moment and Hysteresis 41
Chapter 5. Conclusions 45
Reference 46
參考文獻 [1] V.N. Uversky et al., Encyclopedia of Metalloproteins, no. Encyclopedia of Metalloproteins, DOI 10.1007/978-1-4614-1533-6. 2013.
[2] ed David R. Lide, CRC Handbook of Chemistry and Physics, vol., no. 2005.
[3] C. Kittel, Kittel Introduction to Solid State Physics 8th Wiley. John Wiley & Sons, Inc, 2005.
[4] N. W. Ashcroft, Solid State Physics. 1976.
[5] 陳彥呈, “錫 / 鎳奈米顆粒複合系統之 超導逆磁鄰近效應,” 2012.
[6] J. R. S. J. Bardeen, L. N. Cooper, “Theory of Superconductivity,” Phys. Rev. B, vol. 17, no. 6, pp. 1175–1204, 1957.
[7] L. He, “coexistence of ferromagnetism and superconductivity in Sn nanoparticles,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 82, no. 1, pp. 1–7, 2010.
[8] Y. Yamamoto et al., “Direct Observation of Ferromagnetic Spin Polarization in Gold Nanoparticles,” Phys. Rev. Lett., vol. 93, no. 11, pp. 1–4, 2004.
[9] L. J. De Jongh, “Metal-cluster Compounds: Model Systems for Nanosized Metal Particles,” Appl. Organomet. Chem., 1998.
[10] A. Cassetta, “X-Ray Diffraction (XRD),” Encycl. Membr., no. Warren, 1990, 2016.
[11] A. Gultom, “增強 鎳 ( Ni ) 參雜錫 ( Sn ) 奈米粒子的超導性 Enhanced superconductivity in Ni-doped Sn nanoparticles,” 2019.
[12] S. Wu and W. Li, “Coexistence of Diamagnetism and Spin Polarization in Ag Nanoparticles,” INTERMAG 2006 - IEEE Int. Magn. Conf., vol. 596, no. 1998, pp. 470–470, 2006.
[13] C. G. Granqvist and R. A. Buhrman, “Ultrafine metal particles,” J. Appl. Phys., vol. 47, no. 5, pp. 2200–2219, 1976.
[14] K. Kimoto, Y. Kamiya, M. Nonoyama, and R. Uyeda, “An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure,” Jpn. J. Appl. Phys., vol. 2, no. 11, pp. 702–713, 1963.
[15] Nobuhiko Wada, “Related content Preparation of Fine Metal Particles by Means of Evaporation in Helium Gas,” Jpn. J. Appl. Phys., vol. 6, no. 5, pp. 553–556, 1967.
[16] B. H. Toby, “General Structure Analysis System - GSAS / EXPGUI, A Graphical user interface for GSAS,” J. Appl. Crystallogr., vol. 34, no. 1994, pp. 210–213, 2001.
[17] J. H. Reibenspies, Principles and Applications of Powder Diffraction Principles and Applications of Powder Diffraction. Edited. 2008.
[18] A. S. Volokh, “Scherrer formula: estimation of error in determining small nanoparticle size,” Nanosyst. Physics, Chem. Math., vol. 9, no. 3, pp. 364–369, 2018.
[19] A. L. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev., vol. 56, no. 10, pp. 978–982, 1939.
[20] Shin-Jyi Chen, “以熱蒸鍍方式製備銀奈米粒子之研究 ‘Preparation of Silver Nano-particles by Thermal Evaporation Method,’” Nantai University of Science and Technology, 2006.
[21] 李 其 紘, “氧化殼層對於錫奈米顆粒超導性與自旋極化的影響,” 2010.
[22] B. Mühlschlegel, D. J. Scalapino, and R. Denton, “Thermodynamic properties of small superconducting particles,” Phys. Rev. B, vol. 6, no. 5, pp. 1767–1777, 1972.
[23] E. Batsaikhan, “Physical properties and applications of Na-Co-Fe Prussian Blue analogs and Development of ferromagnetic superspins in bare Cu nanoparticles,” 2018.
[24] N. A. Spaldin, “Magnetic Materials Fundamental and Applications,” Cambridge: CAMBRIDGE UNIVERSITY PRESS, 2011.
指導教授 Wen-Hsien Li 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明