博碩士論文 106222607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.190.156.212
姓名 汎妮莎(Vanny Maranatha Sihotang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 正電子發射極和瞬變伽馬的模擬 質子範圍驗證的分佈 使用PTSim進行治療
(Simulation of Positron Emitter and Prompt Gamma Distributions for Range Verification in Proton Therapy by Using PTSim)
相關論文
★ 雙光子碰撞產生質子反質子對的研究★ 雙光子反應產生KsKs的研究
★ 以動力學與競爭模型模擬光刺激發光的性質★ 雙光子碰撞產生P P_bar Phi 的研究
★ 質子束在水中橫向寬度及深度劑量曲線的量測與模擬★ Recombination phenomenon study by Pad Parallel Plane Ion Chamber
★ 多重線絲漂移室之初始性能★ 以最小平方法估測質子能量
★ 分析Belle實驗中 純粹e^+ e^-→D^(*±) D^0 π^∓和e^+ e^-→D^(*+) D^(*-) π^∓過程★ 質子治療期間伽馬射線發射的研究
★ 分析Belle實驗中純粹四體生成e^+ e^-→D^(*±) D^∓ π^+ π^-及e^+ e^-→D^(*+) D^(*-) π^+ π^-★ XY strip探測器在質子治療之應用
★ XY strip 探測器均勻度校準
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 與光子療法相比,質子束能向目標提供更好的劑量分佈,同時將目標周圍的正常組織的劑 量最小化,在遠端邊緣以外的劑量沉積非常低,盡可能地降低對正常組織的損害。但是,質子射束在射程終點有較大的劑量梯度,這可能造成治療時的劑量分布不確定性。因此,需要在治療計劃中盡可能準確地預測質子束在人體中的劑量分佈,並在治療過程中對其進行良好的監控,例如透過檢測二次粒子來進行體內治療監測。通過質子與目標原子核(例
如 12C,14N 和 16O)的非彈性碰撞核反應,可能產生正子核種,或由被激發靶原子核發出瞬發伽馬射線。從患者體內發出的這些正子核種和瞬發伽馬射線與質子劑量空間分佈具有相關性。本研究採用基於 Geant4 10.4.p02 的 PTSim 套件進行碳,水,PE 和 PMMA 的相關研究,並利用林口長庚醫院質子治療中心真實治療機台的輻射相空間數據為射源,評估不同能量質子造成的正子核種及瞬發伽馬分佈,以驗證質子射程。本研究中偵測的伽馬能譜範圍是 0 – 10 MeV。並發現正子核種、瞬發伽馬及質子劑量三者分布有良好的相關性。瞬發伽馬和質子射程之間的差異為 1.5 – 3.3 mm,正子核種與質子射程之間的差異為 7.2 – 10.5
mm。此外,本研究模擬的正子核種分布與在長庚醫院測得由 130 MeV 質子照射 PMMA所得的互毀光子信號具有一致性。同時,本研究認為 PTSim用於模擬組織中的核相互作用
和正子核種分布上是一種功能強大且合適的工具。
摘要(英) Proton beam offers a better dose distribution to the target while minimizing the dose to the normal tissue surrounding the target, as the dose deposited beyond the distal edge is
very low and the damage to the normal tissue will be minimized in comparison with the photon therapy. However, the end of range is where the beam features its sharpest dose
gradient could be the uncertainties that are encountered in a patient. Therefore, the dose distribution of protons beam in the human body needs to be predicted as accurate as
possible in the treatment planning and well monitored in the delivery process. In vivo treatment monitoring can be performed by detecting the secondary particles. Through the
non-elastic nuclear interaction of protons with the target nuclei such as 12C, 14N, and 16O will produce positron emitters and prompt gammas. These positron emitters and prompt gammas rays emitted from the patient body are strongly associated with the dose distribution of the proton beam. In this thesis, simulations of carbon, water, PE, and
PMMA irradiated with phase space data-carrying CGMH proton beam characteristics are studied. The PTSim based on Geant4 10.4 patch 2 was applied for those various targets to
evaluate the positron emitter and prompt gamma distributions from different proton energies to verify the proton range. To validate our simulation system we compare the depth dose distribution from simulation with the measurement at CGMH under the same condition. The gamma energies detected in this study were in the range of 0 – 10 MeV. There is a good relation between positron emitter and prompt gamma distribution with the dose distribution. Differences between ranges of prompt gamma and proton are 1.5 –3.3 mm and positron emitter with proton are 7.2 – 10.5 mm. The range verification by comparing the measurement data of coincidence 511 keV gammas obtained at CGMH and simulation result of positron emitter distributions in PMMA by 130 MeV protons shows the good agreement. Also, PTSim is a powerful and suitable tool for the simulation of nuclear interactions and positron emitters in tissue.
關鍵字(中) ★ 質子治療
★ PTSim
關鍵字(英) ★ Proton Therapy
★ PTSim
論文目次 ABSTRACT.................................................................................................................... i
ABSTRACT 摘要.......................................................................................................... ii
Acknowledgements ....................................................................................................... iii
Table of Contents .......................................................................................................... iv
List of Figures ............................................................................................................... vi
List of Tables................................................................................................................. ix
Chapter 1 - Introduction...................................................................................................1
1.1. Proton Therapy..................................................................................................1
1.2. Introduction of Positron Annihilation Gamma (PAG) ........................................4
1.3. Introduction of Prompt Gamma (PG).................................................................4
1.4. Proton Therapy in Chang Gung Memorial Hospital Taiwan...............................4
1.5. Objectives and Aims..........................................................................................5
1.6. Thesis Structure Overview.................................................................................5
Chapter 2 - Theory...........................................................................................................6
2.1 Proton Interaction with Matter...........................................................................6
2.1.1 Stopping Power..............................................................................................7
2.1.2 Multiple Coulomb Scattering .........................................................................7
2.1.3 Nuclear Interactions.......................................................................................8
2.2 Proton Bragg Peak.............................................................................................9
2.3 Secondary Gamma during Proton Therapy ......................................................10
v
2.3.1 Positron Annihilation Gamma (PAG) .......................................................10
2.3.2 Prompt Gamma (PG)................................................................................12
2.4 Range uncertainties in Proton Therapy ............................................................14
2.5 In vivo Dose Monitoring ..................................................................................16
2.5.1 Direct Methods.........................................................................................16
2.5.2 Indirect Methods ......................................................................................17
Chapter 3 – Material and Method...................................................................................19
3.1 Geometry And Tracking 4 (GEANT4).............................................................19
3.2 Particle Therapy System Simulation (PTSim) ..................................................20
3.3 Phase Space (PHSP) file ..................................................................................21
3.4 PTSim Monte Carlo Simulation Setup .............................................................22
3.5 Research Workflow .........................................................................................24
3.6 Experimental Setup at Chang Gung Memorial Hospital (CGMH)....................25
Chapter 4 – Results and Discussion ...............................................................................27
4.1 Depth Dose Distribution ..................................................................................27
4.2 Gamma Spectrum from different targets and proton energies...........................28
4.3 The PAG, PG and Dose Distributions..............................................................34
4.4 Experimental Verification of Range.................................................................41
Chapter 5 - Conclusions.................................................................................................44
Bibliographies ...............................................................................................................46
參考文獻 Bibliographies
Agostinelli, S. et al. (2003). Geant4—a simulation toolkit. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors,
and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8
Akagi, T. et al. (2011). The PTSim and TOPAS Projects, Bringing Geant4 to the Particle
Therapy Clinic. Progress in Nuclear Science and Technology, 2(0), 912-917.
doi:10.15669/pnst.2.912
Baskar, R. et al. (2012). Cancer and radiation therapy: current advances and future
directions. Int J Med Sci, 9(3), 193-199. doi:10.7150/ijms.3635
Cai, S. Y. et al. (2015). Depth dose characteristics of proton beams within therapeutic
energy range using the particle therapy simulation framework (PTSim) Monte
Carlo technique. Biomed J, 38(5), 408-413. doi:10.4103/2319-4170.167076
Hueso-Gonzalez. et al. (2016). Compton Camera and Prompt Gamma Ray Timing: Two
Methods for In Vivo Range Assessment in Proton Therapy. Front Oncol, 6, 80.
doi:10.3389/fonc.2016.00080
Knopf, A. C., & Lomax, A. (2013). In vivo proton range verification: a review. Phys Med
Biol, 58(15), R131-160. doi:10.1088/0031-9155/58/15/R131
Kraan, A. C. (2015). Range Verification Methods in Particle Therapy: Underlying
Physics and Monte Carlo Modeling. Front Oncol, 5, 150.
doi:10.3389/fonc.2015.00150
Lau, A. et al. (2013). Range verification of proton radiotherapy with prompt gamma rays.
J Xray Sci Technol, 21(4), 507-514. doi:10.3233/XST-130399
Mashayekhi, M. et al. (2017). Simulation of positron emitters for monitoring of dose
distribution in proton therapy. Rep Pract Oncol Radiother, 22(1), 52-57.
doi:10.1016/j.rpor.2016.10.004
Miyatake, A. et al. (2010). Measurement and verification of positron emitter nuclei
generated at each treatment site by target nuclear fragment reactions in proton
therapy. Med Phys, 37(8), 4445-4455. doi:10.1118/1.3462559
47
Newhauser, W. D., & Zhang, R. (2015). The physics of proton therapy. Phys Med Biol,
60(8), R155-209. doi:10.1088/0031-9155/60/8/R155
Paganetti, H. (2012). Range uncertainties in proton therapy and the role of Monte Carlo
simulations. Phys Med Biol, 57(11), R99-117. doi:10.1088/0031-9155/57/11/R99
Parodi, K. et al. (2007). Patient study of in vivo verification of beam delivery and range,
using positron emission tomography and computed tomography imaging after
proton therapy. Int J Radiat Oncol Biol Phys, 68(3), 920-934.
doi:10.1016/j.ijrobp.2007.01.063
Polf, J. C. et al. (2014). Detecting prompt gamma emission during proton therapy: the
effects of detector size and distance from the patient. Phys Med Biol, 59(9), 2325-
2340. doi:10.1088/0031-9155/59/9/2325
Polf, J. C. et al. (2013). Measurement of characteristic prompt gamma rays emitted from
oxygen and carbon in tissue-equivalent samples during proton beam irradiation.
Phys Med Biol, 58(17), 5821-5831. doi:10.1088/0031-9155/58/17/5821
Robert, C. et al. (2013). PET-based dose delivery verification in proton therapy: a GATE
based simulation study of five PET system designs in clinical conditions. Phys
Med Biol, 58(19), 6867-6885. doi:10.1088/0031-9155/58/19/6867
Schneider, S. et al. (2018). Quantification of MRI visibility and artifacts at 3T of liquid
fiducial marker in a pancreas tissue-mimicking phantom. Med Phys, 45(1), 37-47.
doi:10.1002/mp.12670
Verburg, J. M., & Seco, J. (2014). Proton range verification through prompt gamma-ray
spectroscopy. Phys Med Biol, 59(23), 7089-7106. doi:10.1088/0031-
9155/59/23/7089
Wrońska, A. et al. (2017). Experimental Verification of Key Cross Sections for Promptgamma Imaging in Proton Therapy. Acta Physica Polonica B, 48(10).
doi:10.5506/APhysPolB.48.1631
指導教授 陳鎰鋒(Augustine E. Chen) 審核日期 2020-12-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明