博碩士論文 106223013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.119.143.253
姓名 林家榕(Chia-Jung Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 超小奈米鈀金屬於二維與三維結構中孔洞矽材以及中孔洞碳氮材在有機催化反應之應用
(Ultrasmall Palladium Nanoparticles Confined in 2D-3D Mesoporous Silica and Mesoporous Carbon Nitride for the Catalytic Organic Reaction)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要分為兩大部分,在第一部分研究中,超小奈米鈀金屬還原在中孔洞材料之二維結構SBA-15以及三維結構KIT-6之中,利用化學還原劑使金屬還原速率上升,並藉由和SBA-15以及KIT-6表面原有的羥基,使離子鈀金屬能快速平均分散並負載在SBA-15以及KIT-6孔洞之中並還原奈米鈀金屬顆粒。由於SBA-15以及KIT-6具有高比表面積以及良好的孔洞體積,故使用SBA-15以及KIT-6作為載體可以提高奈米鈀金屬分散率和負載率從而提高催化活性。本實驗將製成的Pd(x)@SBA-15以及Pd(x)@KIT-6應用在催化苯乙烯氫化反應當中,分別探討二維結構以及三維結構、不同氫供體以及不同溶劑對催化活性之影響。經過一系列的研究使用Pd(30)@KIT-6作為催化劑去進行催化苯乙烯氫化反應,其轉換頻率(TOF)高達363 h-1。在這項研究中,Pd(30)@KIT-6展示了其用於催化苯乙烯氫化是高活性催化劑。
在第二部分研究中,通過奈米模鑄法(Nanocasting)合成出中孔洞碳氮材料(MUFC),並將奈米鈀金屬顆粒負載在MUFC上作為催化觸媒。藉由MUFC上不僅可以利用有缺陷的C-N位點和氮間隙可以很均勻分散鈀金屬顆粒,且由於其具有鹼性的含氮位點可有效促進反應進行,從而提高催化活性。本實驗將Pd(x)@MUFC應用在催化苯甲醇氧化反應當中,分別探討不同載體、不同溶劑以及不同鹼添加試劑對催化活性之影響。在催化苯甲醇氧化反應的研究中Pd(30)@MUFC表現出很高的催化活性,其轉換頻率(TOF)高達750 h-1。在這項研究中,Pd(30)@MUFC展示了其用於催化苯甲醇氧化反應中是高前景催化劑。
摘要(英) This study consists of two main parts. In the first part, the Palladium nanoparticles (Pd NPs) with a particle size of 2-3nm are successfully confined within the 2D mesoporous silica SBA-15 and the 3D mesoporous silica KIT-6. Under the wet impregnation process, SBA-15 and KIT-6 were immersed in Pd2+ precursor and adsorbed into the pores, then. The mixture chemically reduced by reagent containing NaBH4 and NH3BH3 to obtain Pd(x)@SBA-15 and Pd(x)@KIT-6. It was found that the use of SBA-15 and KIT-6 support can highly enhance the dispersion and efficiency due to the high surface area and large pore volume. In addition, SBA-15 and KIT-6 with the pore size of 9.09 nm and 9.56 nm, respectively, may effectively confine the Pd NPs and subsequently avoid the aggregation. According to the X-ray diffraction pattern and TEM image, it can be confirmed that the particle size of Pd NPs is about 2-3 nm and highly dispersed without aggregation. The Pd(x)@SBA-15 and Pd(x)@KIT-6 exhibited superior catalytic activity and chemoselectivity for the catalytic transfer hydrogenation of styrene under mild conditions with formic acid and ammonium formate as a hydrogen donor. Among all the as-prepared catalysts, the Pd(30)@KIT-6 exhibited the highest turnover frequency (TOF) of 363 h-1. In addition, Pd(30)@KIT-6 exhibited an excellent high stability after five successive cycles without significant loss of its catalytic activity.
In the second part of study, heteroatom doped carbon materials have received considerable attention in the field of catalysis. Herein, we report a catalyst made of palladium nanoparticles (Pd NPs) supported on mesoporous nitrogen-doped carbon (MUFC), Pd@MUFC. The use of the mixture of melamine-urea-formaldehyde as a precursor and the mesoporous silica SBA-15 as a hard template afforded a high-nitrogen-content mesoporous carbon material that showed high activity in stabilizing Pd NPs. The N-doped mesoporous carbon, MUFC, can provide a large surface area to adsorb the reductant and substrate, and enhance the accessibility of the active sites of the Pd NPs in the catalytic reaction process. When Pd@MUFC was applied as catalyst in the catalytic aerobic oxidation of benzyl alcohol, it achieved conversion rate and selectivity of 99.9% within 30 minutes. Among all the as-prepared catalysts, the Pd(30)@MUFC exhibited the highest turnover frequency of 750 h-1. The remarkable catalytic activity for the benzyl alcohol oxidation can be attributed to the ultra-small Pd NPs confined in the hexagonal N-doped carbonaceous MUFC.
關鍵字(中) ★ 鈀奈米金屬
★ 催化反應
★ 有序中孔洞矽材
★ 中孔洞碳氮材料
關鍵字(英) ★ Catalyst
論文目次 中文摘要 I
ABSTRACT III
謝誌 V
目錄 VII
圖目錄 XI
表目錄 XX
第一章 序論 1
第壹部分 鈀金屬在中孔洞矽材催化苯乙烯氫化反應 1
1-1 中孔洞二氧化矽 1
1-1-1中孔洞材料之介紹 1
1-1-2中孔洞二氧化矽合成方法 4
1-1-3軟性模板-微胞結構 5
1-2 二維及三維中孔洞二氧化矽 9
1-2-1二維與三維的差異 9
1-2-2二維結構SBA-15 10
1-2-3三維結構KIT-6 11
1-3 鈀金屬催化苯乙烯氫化反應 12
1-3-1不飽和碳氫化合物的氫化反應 12
1-3-2金屬催化苯乙烯氫化反應機制介紹 13
1-3-3奈米金屬鈀催化苯乙烯氫化反應文獻回顧 15
第貳部分 鈀金屬在中孔洞碳氮材催化苯甲醇氧化反應 20
1-4 有序中孔洞碳氮材 20
1-4-1奈米模鑄法(Nanocasting)合成機制 22
1-4-2奈米模鑄法合成有序中孔洞碳氮材之發展 23
1-5 鈀金屬催化苯甲醇氧化反應 30
1-5-1苯甲醛介紹 30
1-5-2金屬催化苯甲醇氧化機制介紹 31
1-5-3奈米金屬鈀催化苯甲醇氧化反應文獻回顧 33
1-5-4催化劑載體的表面酸鹼性對催化性能的影響 38
1-6 研究動機與目的 41
第二章 實驗部分 43
2-1 實驗藥品 43
2-2 鈀金屬催化苯乙烯氫化反應實驗 45
2-2-1二維結構p6mm中孔洞矽材SBA-15合成 45
2-2-2三維立方體Ia3d中孔洞矽材KIT-6合成 46
2-2-3以PdCl2做為前驅物還原至SBA-15與KIT-6之中 47
2-2-3.1利用雙還原劑化學還原法 47
2-2-4利用Pd(x)@SBA-15與Pd(x)@KIT-6催化苯乙烯氫化實驗 49
2-2-5催化苯乙烯氫化重複使用實驗 50
2-3 鈀金屬催化苯甲醇氧化反應實驗 51
2-3-1奈米模鑄法合成中孔洞碳氮材MUFC 51
2-3-2以PdCl2做為前驅物還原至MUFC之中 52
2-3-3利用Pd(x)@MUFC催化苯甲醇氧化實驗 53
2-3-4 Pd(x)@MUFC催化苯甲醇氧化重複實驗 54
2-4 實驗設備 55
2-4-1實驗合成設備 55
2-4-2實驗鑑定儀器 55
第三章 結果與討論 57
第壹部分 鈀金屬在中孔洞矽材催化苯乙烯氫化反應 57
3-1 Pd(x)@SBA-15以及Pd(x)@KIT-6材料系列 57
3-1-1基本性質鑑定 57
3-1-1.1 SAXRD繞射圖譜 57
3-1-1.2 WAXRD繞射圖譜 61
3-1-1.3等溫氮氣吸脫附 63
3-1-1.4 SEM影像 69
3-1-1.5 TEM圖像 72
3-1-1.6 XPS結果分析 82
3-1-2鈀催化苯乙烯氫化實驗 85
3-1-2.1 Pd(x)@SBA-15催化苯乙烯氫化反應 85
3-1-2.2 Pd(x)@KIT-6催化苯乙烯氫化反應 87
3-1-2.3不同材料對催化苯乙烯氫化反應之比較 89
3-1-2.4不同氫供體對催化苯乙烯氫化反應之比較 91
3-1-2.5 不同溶劑對催化苯乙烯氫化反應之比較 93
3-1-2.6催化不同烯烴之氫化反應 96
3-1-3 Pd(30)@KIT-6催化苯乙烯氫化反應重複利用之實驗 98
3-1-3.1 Pd(30)@KIT-6 5th回收利用 98
3-1-3.2 Pd(30)@KIT-6 5th XRD繞射圖譜 100
3-1-3.3 Pd(30)@KIT-6 5th的TEM圖譜 101
第貳部分 鈀金屬在中孔洞碳氮材催化苯甲醇氧化反應 103
3-2 Pd(x)@MUFC材料系列 103
3-2-1基本性質鑑定 103
3-2-1.1 SAXRD繞射圖譜 103
3-2-1.2 WAXRD繞射圖譜 105
3-2-1.3等溫氮氣吸脫附 106
3-2-1.4 SEM影像 110
3-2-1.5 TEM影像 112
3-2-1.6元素分析以及XPS電子能譜 118
3-2-1.7拉曼光譜分析 125
3-2-2鈀催化苯甲醇氧化反應實驗 126
3-2-2.1 Pd(x)@MUFC催化苯甲醇氧化反應 126
3-2-2.2不同材料對催化苯甲醇氧化反應之比較 128
3-1-3.3不同溶劑對催化苯甲醇氧化反應之比較 132
3-1-3.4不同鹼試劑對催化苯甲醇氧化反應之比較 134
3-1-3.5催化不同醇類之氧化反應 137
3-2-3 Pd(30)@MUFC催化苯甲醇氧化反應重複利用之實驗 139
3-2-3.1 Pd(30)@MUFC 5th 回收利用產氫 139
3-2-3.2 Pd(30)@MUFC 5th XRD繞射圖譜 141
3-2-3.3 Pd(30)@MUFC 5th TEM圖 142
第四章 結論 144
第五章 參考文獻 146
參考文獻 1. Everett, D. H., MANUAL OF SYMBOLS AND TERMINOLOGY FOR PHYSICOCHEMICAL QUANTITIES AND UNITS APPENDIX II Definitions, Terminology and Symbols in Colloid and Surface Chemistry PART I. Pure Apple. Chem. 1972, 31, 578-638.
2. Namasivayam, C.; Kavitha, D., Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments 2002, 54 (1), 47-58.
3. Brasquet, C.; Le Cloirec, P., Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon 1997, 35 (9), 1307-1313.
4. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials 2009, 163 (1), 213-221.
5. Li, G.; Zhao, Z.; Liu, J.; Jiang, G., Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of hazardous materials 2011, 192 (1), 277-283.
6. Yan, Z.; Tao, S.; Yin, J.; Li, G., Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. Journal of Materials Chemistry 2006, 16 (24), 2347-2353.
7. Deere, J.; Magner, E.; Wall, J.; Hodnett, B., Adsorption and activity of cytochrome c on mesoporous silicatesElectronic supplementary information (ESI) available: experimental details. See http://www. rsc. org/suppdata/cc/b0/b009478l. Chemical Communications 2001, (5), 465-465.
8. Yang, Y.-C.; Deka, J. R.; Wu, C.-E.; Tsai, C.-H.; Saikia, D.; Kao, H.-M., Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption. Journal of Materials Science 2017, 52 (11), 6322-6340.
9. Hao, Y.; Chong, Y.; Li, S.; Yang, H., Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols. The Journal of Physical Chemistry C 2012, 116 (11), 6512-6519.
10. Li, M.; Hu, J.; Lu, H., A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catalysis Science & Technology 2016, 6 (19), 7186-7192.
11. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
12. Karimian, D.; Yadollahi, B.; Mirkhani, V., Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous and Mesoporous Materials 2017, 247, 23-30.
13. Zhou, H.; Zhu, S.; Honma, I.; Seki, K., Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chemical Physics Letters 2004, 396 (4-6), 252-255.
14. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
15. Frank, H.; Maximilian, C.; Jürgen, M.; Michael, F., Silica‐Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
16. Gibson, L. T., Mesosilica materials and organic pollutant adsorption: part A removal from air. Chemical Society Reviews 2014, 43 (15), 5163-5172.
17. Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
18. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568.
20. Zhang, J.; Li, X.; Li, X., Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Progress in Polymer Science 2012, 37 (8), 1130-1176.
21. D. Fennell Evans, H. W., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 1999; Vol. 2nd Edition.
22. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
23. Han, L.; Che, S., An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Advanced Materials 2018, 30 (17), 1705708.
24. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548.
25. Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A., Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C 2007, 111 (23), 8268-8277.
26. Kleitz, F.; Hei Choi, S.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
27. Almar, L.; Colldeforns, B.; Yedra, L.; Estrade, S.; Peiro, F.; Morata, A.; Andreu, T.; Tarancon, A., High-temperature long-term stable ordered mesoporous Ni-CGO as an anode for solid oxide fuel cells. Journal of Materials Chemistry A 2013, 1 (14), 4531-4538.
28. Ma, X.; Jiang, T.; Han, B.; Zhang, J.; Miao, S.; Ding, K.; An, G.; Xie, Y.; Zhou, Y.; Zhu, A., Palladium nanoparticles in polyethylene glycols: Efficient and recyclable catalyst system for hydrogenation of olefins. Catalysis Communications 2008, 9 (1), 70-74.
29. Wang, D.; Astruc, D., The Golden Age of Transfer Hydrogenation. Chemical Reviews 2015, 115 (13), 6621-6686.
30. Bhuyan, D.; Saikia, L., Scavenging Pd2+ on Amine-Functionalized SBA-15: A Facile Synthesis of Leach-Free Pd0 Nanocatalyst for Base-Free Chemoselective Transfer Hydrogenation of Olefins. ChemistrySelect 2017, 2 (22), 6350-6358.
31. Chen, A.; Li, Y.; Chen, J.; Zhao, G.; Ma, L.; Yu, Y., Selective Hydrogenation of Phenol and Derivatives over Polymer-Functionalized Carbon-Nanofiber-Supported Palladium Using Sodium Formate as the Hydrogen Source. ChemPlusChem 2013, 78 (11), 1370-1378.
32. Vernekar, A. A.; Patil, S.; Bhat, C.; Tilve, S. G., Magnetically recoverable catalytic Co–Co2B nanocomposites for the chemoselective reduction of aromatic nitro compounds. RSC Advances 2013, 3 (32), 13243-13250.
33. Sarmah, P. P.; Dutta, D. K., Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified Montmorillonite clay. Green Chemistry 2012, 14 (4), 1086-1093.
34. Zhang, C.; Leng, Y.; Jiang, P.; Li, J.; Du, S., Immobilizing Palladium Nanoparticles on Nitrogen-Doped Carbon for Promotion of Formic Acid Dehydrogenation and Alkene Hydrogenation. ChemistrySelect 2017, 2 (20), 5469-5474.
35. Harraz, F. A.; El-Hout, S. E.; Killa, H. M.; Ibrahim, I. A., Palladium nanoparticles stabilized by polyethylene glycol: Efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene. Journal of Catalysis 2012, 286, 184-192.
36. Gong, L.-H.; Cai, Y.-Y.; Li, X.-H.; Zhang, Y.-N.; Su, J.; Chen, J.-S., Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chemistry 2014, 16 (8), 3746-3751.
37. Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F., Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43 (6), 1293-1302.
38. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
39. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
40. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
41. Liang, C.; Li, Z.; Dai, S., Mesoporous Carbon Materials: Synthesis and Modification. Angewandte Chemie International Edition 2008, 47 (20), 3696-3717.
42. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
43. Wang, Y.; Wang, X.; Antonietti, M., Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition 2012, 51 (1), 68-89.
44. Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science 2012, 5 (5), 6717-6731.
45. Zhu, C.; Dong, S., Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5 (5), 1753-1767.
46. Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M., High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage. Advanced Functional Materials 2010, 20 (11), 1827-1833.
47. Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S.-W.; Han, J. H.; Lim, T.-H.; Gautam, S.; Chae, K. H.; Yoon, C. W., Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. Journal of Materials Chemistry A 2014, 2 (25), 9490-9495.
48. Deng, Q.-F.; Liu, L.; Lin, X.-Z.; Du, G.; Liu, Y.; Yuan, Z.-Y., Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chemical Engineering Journal 2012, 203, 63-70.
49. Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Advanced Functional Materials 2013, 23 (18), 2322-2328.
50. Xiao, J.; Xie, Y.; Nawaz, F.; Jin, S.; Duan, F.; Li, M.; Cao, H., Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination. Applied Catalysis B: Environmental 2016, 181, 420-428.
51. Malik, R.; Tomer, V. K.; Dankwort, T.; Mishra, Y. K.; Kienle, L., Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors. Journal of Materials Chemistry A 2018, 6 (23), 10718-10730.
52. Wang, Y.; Wang, X.; Antonietti, M.; Zhang, Y., Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates. ChemSusChem 2010, 3 (4), 435-439.
53. Yan, H., Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chemical Communications 2012, 48 (28), 3430-3432.
54. Vinu, A.; Ariga, K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y., Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials 2005, 17 (13), 1648-1652.
55. Mane, G. P.; Dhawale, D. S.; Anand, C.; Ariga, K.; Ji, Q.; Wahab, M. A.; Mori, T.; Vinu, A., Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A 2013, 1 (8), 2913-2920.
56. Gu, D.; Schüth, F., Synthesis of non-siliceous mesoporous oxides. Chemical Society Reviews 2014, 43 (1), 313-344.
57. Qiu, Y.; Gao, L., Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites, at atmospheric pressure. Chemical Communications 2003, (18), 2378-2379.
58. Guo, Q.; Yang, Q.; Zhu, L.; Yi, C.; Zhang, S.; Xie, Y., A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications 2004, 132 (6), 369-374.
59. Kaatz, F. H.; Dai, J. Y.; Markworth, P. R.; Buchholz, D. B.; Chang, R. P. H., Heteroepitaxial oxide structures grown by pulsed organometallic beam epitaxy (POMBE). Journal of Crystal Growth 2003, 247 (3), 509-515.
60. Zimmerman, J. L.; Williams, R.; Khabashesku, V. N.; Margrave, J. L., Synthesis of Spherical Carbon Nitride Nanostructures. Nano Letters 2001, 1 (12), 731-734.
61. Zhong, L.; Anand, C.; Lakhi, K. S.; Lawrence, G.; Vinu, A., Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction. Scientific Reports 2015, 5, 12901.
62. Vinu, A.; Srinivasu, P.; Sawant, D. P.; Mori, T.; Ariga, K.; Chang, J.-S.; Jhung, S.-H.; Balasubramanian, V. V.; Hwang, Y. K., Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials 2007, 19 (17), 4367-4372.
63. Lakhi, K. S.; Cha, W. S.; Joseph, S.; Wood, B. J.; Aldeyab, S. S.; Lawrence, G.; Choy, J.-H.; Vinu, A., Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today 2015, 243, 209-217.
64. Jin, X.; Balasubramanian, V. V.; Selvan, S. T.; Sawant, D. P.; Chari, M. A.; Lu, G. Q.; Vinu, A., Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content: A Metal-Free Basic Catalyst. Angewandte Chemie International Edition 2009, 48 (42), 7884-7887.
65. Talapaneni, S. N.; Mane, G. P.; Mano, A.; Anand, C.; Dhawale, D. S.; Mori, T.; Vinu, A., Synthesis of Nitrogen-Rich Mesoporous Carbon Nitride with Tunable Pores, Band Gaps and Nitrogen Content from a Single Aminoguanidine Precursor. ChemSusChem 2012, 5 (4), 700-708.
66. Talapaneni, S. N.; Anandan, S.; Mane, G. P.; Anand, C.; Dhawale, D. S.; Varghese, S.; Mano, A.; Mori, T.; Vinu, A., Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. Journal of Materials Chemistry 2012, 22 (19), 9831-9840.
67. Ma, F.; Zhao, H.; Sun, L.; Li, Q.; Huo, L.; Xia, T.; Gao, S.; Pang, G.; Shi, Z.; Feng, S., A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. Journal of Materials Chemistry 2012, 22 (27), 13464-13468.
68. Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W., Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. Journal of Power Sources 2013, 230, 50-58.
69. Sun, G.; Ma, L.; Ran, J.; Li, B.; Shen, X.; Tong, H., Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors. Electrochimica Acta 2016, 194, 168-178.
70. Tan, H. T.; Chen, Y.; Zhou, C.; Jia, X.; Zhu, J.; Chen, J.; Rui, X.; Yan, Q.; Yang, Y., Palladium nanoparticles supported on manganese oxide–CNT composites for solvent-free aerobic oxidation of alcohols: Tuning the properties of Pd active sites using MnOx. Applied Catalysis B: Environmental 2012, 119-120, 166-174.
71. Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y., Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 2014, 43 (10), 3480-524.
72. Luzzio, F. A.; Fitch, R. W.; Moore, W. J.; Mudd, K. J., A Facile Oxidation of Alcohols Using Pyridinium Chlorochromate/Silica Gel. Journal of Chemical Education 1999, 76 (7), 974.
73. Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman, A., Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research 2002, 35 (9), 774-781
74. García-Suárez, E. J.; Tristany, M.; García, A. B.; Collière, V.; Philippot, K., Carbon-supported Ru and Pd nanoparticles: Efficient and recyclable catalysts for the aerobic oxidation of benzyl alcohol in water. Microporous and Mesoporous Materials 2012, 153, 155-162.
75. Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K., Hydroxyapatite-Supported Palladium Nanoclusters:  A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society 2004, 126 (34), 10657-10666.
76. Lu, A.-H.; Li, W.-C.; Hou, Z.; Schüth, F., Molecular level dispersed Pd clusters in the carbon walls of ordered mesoporous carbon as a highly selective alcohol oxidation catalyst. Chemical Communications 2007, (10), 1038-1040.
77. Harada, T.; Ikeda, S.; Hashimoto, F.; Sakata, T.; Ikeue, K.; Torimoto, T.; Matsumura, M., Catalytic Activity and Regeneration Property of a Pd Nanoparticle Encapsulated in a Hollow Porous Carbon Sphere for Aerobic Alcohol Oxidation. Langmuir 2010, 26 (22), 17720-17725.
78. Chen, Y.; Guo, Z.; Chen, T.; Yang, Y., Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. Journal of Catalysis 2010, 275 (1), 11-24.
79. Wang, B.; Lin, M.; Ang, T. P.; Chang, J.; Yang, Y.; Borgna, A., Liquid phase aerobic oxidation of benzyl alcohol over Pd and Rh catalysts on N-doped mesoporous carbon: Effect of the surface acido-basicity. Catalysis Communications 2012, 25, 96-101.
80. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
81. Li, J.; Cheng, S.; Du, T.; Shang, N.; Gao, S.; Feng, C.; Wang, C.; Wang, Z., Pd anchored on C3N4 nanosheets/reduced graphene oxide: an efficient catalyst for the transfer hydrogenation of alkenes. New Journal of Chemistry 2018, 42 (11), 9324-9331.
82. Karimi, B.; Zamani, A.; Abedi, S.; Clark, J. H., Aerobic oxidation of alcohols using various types of immobilized palladium catalyst: the synergistic role of functionalized ligands, morphology of support, and solvent in generating and stabilizing nanoparticles. Green Chemistry 2009, 11 (1), 109-119.
83. Hu, Z.; Tan, S.; Mi, R.; Li, X.; Bai, J.; Guo, X.; Hu, G.; Hang, P.; Li, J.; Li, D.; Yang, Y.; Yan, X., Formic Acid or Formate Derivatives as the In Situ Hydrogen Source in Au-Catalyzed Reduction of para-Chloronitrobenzene. ChemistrySelect 2018, 3 (10), 2850-2853.
84. Pan, Y.; Ma, D.; Liu, H.; Wu, H.; He, D.; Li, Y., Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts. Journal of Materials Chemistry 2012, 22 (21), 10834-10839.
85. Li, J.; Zhou, X.; Shang, N.-Z.; Feng, C.; Gao, S.-T.; Wang, C., Nitrogen-enriched porous carbon supported Pd-nanoparticles as an efficient catalyst for the transfer hydrogenation of alkenes. New Journal of Chemistry 2018, 42 (20), 16823-16828.
86. Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M., Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33 (11), 1641-1653.
87. Chen, Y.; Zheng, H.; Guo, Z.; Zhou, C.; Wang, C.; Borgna, A.; Yang, Y., Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: Support composition and structure sensitivity. Journal of Catalysis 2011, 283 (1), 34-44.
88. Xu, J.; Shang, J.-K.; Chen, Y.; Wang, Y.; Li, Y.-X., Palladium nanoparticles supported on mesoporous carbon nitride for efficiently selective oxidation of benzyl alcohol with molecular oxygen. Applied Catalysis A: General 2017, 542, 380-388.
89. Karimi, B.; Abedi, S.; Clark, J. H.; Budarin, V., Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA-15 in Stabilizing Palladium Nanoparticles. Angewandte Chemie 2006, 118 (29), 4894-4897.
90. Chen, G.-J.; Wang, J.-S.; Jin, F.-Z.; Liu, M.-Y.; Zhao, C.-W.; Li, Y.-A.; Dong, Y.-B., Pd@Cu(II)-MOF-Catalyzed Aerobic Oxidation of Benzylic Alcohols in Air with High Conversion and Selectivity. Inorganic Chemistry 2016, 55 (6), 3058-3064.
指導教授 高憲明 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明