博碩士論文 106223016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:35.168.111.191
姓名 夏國書(Kuo-Shu Hsia)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具羧酸官能基三維結構中孔洞材料製備含釕金屬及銅鎳金屬奈米顆粒之催化應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 本篇論文分成兩個部分,第一部分為在鹼性環境下合成具有羧酸官能
基 中孔洞材料 SBA-1,簡稱 CS-1B-x,其中 x = [CES/(CES+TEOS)]。將合成好的材料 CS-1B-x含浸釕金屬離子前驅液,利用化學還原法將釕金屬離子還原成釕金屬奈米顆粒,形成金屬奈米顆粒的過程中,受到材料孔洞大小及官能基的影響,其金屬顆粒大小約在 2-4 nm間。再將含浸釕金屬奈米顆粒的材料應用於硼烷氨水解製氫反應中,在 Ru(1)-CS-1B-10時,達到最佳的催化活性,其 TOF值為 202.4 H2 mol/metal mol min、 活化能為 24.13 kJ/mol。
第二部分 為將 CS-1B-x含浸銅及鎳金屬離子前驅液,利用熱還原法將
金屬離子還原成金屬奈米顆粒。過程中,在鹼性環境下 (pH = 9) 吸附金屬離子,此時材料上的羧酸官能基 (COOH) 會 去離子化 形成負離子
( 能夠有效吸附金屬離子進入材料中。將合成好的材料應用於 4-Nitrophenol之催化還原反應,將得到的數據帶入 Pseudo-first order得出反應速率常數 ,得知在銅及鎳的比例為 8 2時,達到最佳的催化活性,其反應速率 k值高達 205.3 s-1g-1。
摘要(英) I have two part in my study. In the first part, ruthenium Nanoparticles (Ru NPs) are successfully confined within the cage-type mesopores of cubic mesoporous silica nanoparticles (MSNs) SBA-1 (sample denoted as Ru(y)-CS-1B-x) functionalized with carboxylic acid (-COOH) groups. The Ru NPs were forms inside the pores of SBA-1 by using chemical reduction with aqueous solution of NaBH4 and NH3BH3. The synthesized Ru(y)-CS-1B-x materials were characterized by nitrogen adsorption-desorption isotherms, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), solid-state 13C and 29Si MAS NMR spectroscopy. According to the TEM images, it can be known that particle size of Ru NPs is about 2-4 nm. The Ru(1)-CS-1B-10 catalyst exhibits high catalytic activity in the catalytic hydrogen generation through hydrolysis of NH3BH3. The turnover frequency of 202.4 H2 mol/metal mol min and activation energy of 24.13 kJ/mol. The remarkable activity for hydrolysis of NH3BH3 can be attributed to the ultra-small Ru NPs confined in mesoporous of SBA-1 MSNs.
In the second part, the copper/nickel alloy incorporated in CS-1B-x (CuyNi10-y-CS-1B-x), Under alkaline condition (pH=9), the –COOH groups on the surface deprotonate and become –COO- group, with efficiently interact with Cu2+/Ni2+ cations and allow facile fabrication of Cu-Ni NPs. The CuyNi10-y-CS-1B-x were used for reduction of 4-nitrophenol, and the Cu8Ni2-CS-1B-10 shows high catalytic activity with the activity parameter of 205.3 (s-1gcat.-1). The synergistic effect between Cu and Ni plays an important role for reduction of 4-nitrophenol.
關鍵字(中) ★ 中孔洞材料
★ 金屬奈米顆粒
★ 有機汙染物降解
★ 產氫
關鍵字(英)
論文目次 目錄
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xii
第一章 序論 1
1-1中孔洞二氧化矽材料 1
1-1-1中孔洞材料介紹 1
1-1-2 中孔洞材料定義 1
1-2界面活性劑與矽酸鹽之介紹 4
1-2-1界面活性劑之種類 5
1-2-2微胞的形成 7
1-2-3 界面活性劑與矽氧化物的作用力 8
1-3官能基化之中孔洞材料 10
1-4 文獻回顧 12
1-4-1 中孔洞材料SBA-1之合成與介紹 12
1-4-2 具羧酸官能基之中孔洞材料及其應用 14
1-4-3 中孔洞材料吸附金屬之文獻 19
1-4-4 金屬奈米顆粒對硼烷氨水解產氫之文獻 23
1-4-5 金屬奈米顆粒對4-Nitrophenol降解反應之文獻 28
1-5 研究動機及目的 35
第二章 實驗部分 36
2-1 實驗藥品 36
2-2 實驗步驟 38
2-2-1具羧酸官能基的中孔洞矽材SBA-1合成 38
2-2-2以鍛燒或硝酸溶液去除孔洞中的模板 39
2-2-3 CS-1B-x 吸附釕及銅鎳離子製備金屬奈米顆粒 40
2-2-3.1 利用雙還原劑進行化學還原法還原釕離子製備釕奈米金屬(Ruy-CS-1B-x) 40
2-2-3.2 利用熱還原法還原銅鎳離子製備銅鎳奈米金屬 (CuyNi10-y-CS-1B-x) 42
2-2-4 材料對硼烷氨進行催化水解產氫之反應 43
2-2-4.1 硼烷氨催化水解產氫實驗 43
2-2-4.2 材料回收之重複使用 45
2-2-5材料對4-Nitrophenol進行催化還原反應 46
2-2-5.1 4-Nitrophenol催化還原反應 46
2-2-5.2材料回收之重複使用 46
2-3 實驗設備 48
2-3-1 實驗合成設備 48
2-3-2 實驗鑑定儀器 48
第三章 結果與討論 50
3-1 Ruy-CS-1B-x材料系列 50
3-1-1 基本性質鑑定 50
3-1-1.1 SAXRD 繞射圖譜 50
3-1-1.2 WAXRD 繞射圖譜 53
3-1-1.3 13C CP/MAS NMR 55
3-1-1.4 29Si MAS NMR 56
3-1-1.5 FTIR紅外線光譜 58
3-1-1.6 表面電位 59
3-1-1.7 等溫氮氣吸脫附 60
3-1-1.8 TEM影像 64
3-1-1.9 SEM影像 68
3-1-1.10 XPS光譜圖 71
3-1-2 Ru(y)-CS-1B-x之硼烷氨水解產氫反應 72
3-1-2.1 以化學還原法還原不同釕金屬比例之催化活性 73
3-1-2.2 Ru(1)-CS-1B-10之動力學探討 75
3-1-2.3 Ru(1)-CS-1B-10之回收利用 79
3-2 CuyNi10-y-CS-1B-x材料系列 83
3-2-1 基本性質鑑定 83
3-2-1.1 SAXRD 繞射圖譜 83
3-2-1.2 WAXRD 繞射圖譜 86
3-2-1.3 等溫氮氣吸脫附 88
3-2-1.4 TEM 影像 92
3-2-1.5 SEM影像 96
3-2-1.6 XPS圖譜 98
3-2-1.7 ICP-MS結果 99
3-2-2 4-Nitrophenol催化反應 100
3-2-2.1 CuyNi10-y-CS-1B-0之4-Nitrophenol催化活性結果 102
3-2-2.2 CuyNi10-y-CS-1B-0 動力學及催化活性探討 104
3-2-2.3 CuyNi10-y-CS-1B-10之4-Nitrophenol催化活性結果 107
3-2-2.4 CuyNi10-y-CS-1B-x之回收利用 112
第四章 結論 116
第五章 參考文獻 117
參考文獻 1. 黃昱源, 吳., 粉末登場:無用之用的奈米孔洞材料. 科學發展 2015 , 513 , 16-21.
2. Yiu, H. H.; Botting, C. H.; Botting, N. P.; Wright, P. A., Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve. Physical Chemistry Chemical Physics 2001, 3 (15), 2983-2985.
3. Slowing, I. I.; Trewyn, B. G.; Lin, V. S.-Y., Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. Journal of the American Chemical Society 2007, 129 (28), 8845-8849.
4. Katiyar, A.; Ji, L.; Smirniotis, P.; Pinto, N. G., Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. Journal of chromatography A 2005, 1069 (1), 119-126.
5. Walcarius, A.; Mercier, L., Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. Journal of Materials Chemistry 2010, 20 (22), 4478-4511.
6. Li, Y.; Yang, Z.; Wang, Y.; Bai, Z.; Zheng, T.; Dai, X.; Liu, S.; Gui, D.; Liu, W.; Chen, M., A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature communications 2017, 8 (1), 1354.
7. Yang, H.; Xu, R.; Xue, X.; Li, F.; Li, G., Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. Journal of Hazardous Materials 2008, 152 (2), 690-698.
8. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of hazardous materials 2009, 163 (1), 213-221.
9. Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical reviews 1997, 97 (6), 2373-2420.
10. Taguchi, A.; Schüth, F., Ordered mesoporous materials in catalysis. Microporous and mesoporous materials 2005, 77 (1), 1-45.
11. Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J., Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 1994, 368 (6469), 321.
12. Vallet‐Regí, M.; Balas, F.; Arcos, D., Mesoporous materials for drug delivery. Angewandte Chemie International Edition 2007, 46 (40), 7548-7558.
13. Tang, F.; Li, L.; Chen, D., Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced materials 2012, 24 (12), 1504-1534.
14. Yang, P.; Gai, S.; Lin, J., Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews 2012, 41 (9), 3679-3698.
15. Everett, D., Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry 1972, 31 (4), 577-638.
16. Fayed, T. A.; Shaaban, M. H.; El-Nahass, M. N.; Hassan, F. M., Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection. Int. J. Chem. Appl. Biol. Sci 2014, 1, 74-94.
17. Vivero-Escoto, J. L.; Chiang, Y.-D.; Wu, K. C.; Yamauchi, Y., Recent progress in mesoporous titania materials: adjusting morphology for innovative applications. Science and Technology of Advanced Materials 2012, 13 (1), 013003.
18. Soler-Illia, G. J. d. A.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical reviews 2002, 102 (11), 4093-4138.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of lipid bilayers and vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1977, 470 (2), 185-201.
20. Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D., Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers. The Journal of Physical Chemistry B 2002, 106 (10), 2552-2558.
21. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
22. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317.
23. Kim, M. J.; Ryoo, R., Synthesis and pore size control of cubic mesoporous silica SBA-1. Chemistry of materials 1999, 11 (2), 487-491.
24. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R., Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 2000, 408 (6811), 449.
25. Antonietti, M.; Conrad, J.; Thuenemann, A., Polyelectrolyte-surfactant complexes: a new type of solid, mesomorphous material. Macromolecules 1994, 27 (21), 6007-6011.
26. Liu, N.; Assink, R. A.; Brinker, C. J., Synthesis and characterization of highly ordered mesoporous thin films with–COOH terminated pore surfaces. Chemical Communications 2003, (3), 370-371.
27. Yang, C.-m.; Zibrowius, B.; Schüth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chemical Communications 2003, (14), 1772-1773.
28. Yang, Q.; Wang, S.; Fan, P.; Wang, L.; Di, Y.; Lin, K.; Xiao, F.-S., pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chemistry of Materials 2005, 17 (24), 5999-6003.
29. Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S., Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. Journal of Materials Chemistry 2007, 17 (12), 1216-1221.
30. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
31. Tsai, C.-H.; Chang, W.-C.; Saikia, D.; Wu, C.-E.; Kao, H.-M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. Journal of hazardous materials 2016, 309, 236-248.
32. Lin, C. H.; Deka, J. R.; Wu, C. E.; Tsai, C. H.; Saikia, D.; Yang, Y. C.; Kao, H. M., Bifunctional Cage‐Type Cubic Mesoporous Silica SBA‐1 Nanoparticles for Selective Adsorption of Dyes. Chemistry–An Asian Journal 2017, 12 (12), 1314-1325.
33. Han, Y.-J.; Kim, J. M.; Stucky, G. D., Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chemistry of Materials 2000, 12 (8), 2068-2069.
34. Martı́nez, A. n.; López, C.; Márquez, F.; Dı́az, I., Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis 2003, 220 (2), 486-499.
35. Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G. A., Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nature materials 2009, 8 (2), 126.
36. Wang, H.-b.; Zhang, Y.-h.; Yang, H.-l.; Ma, Z.-y.; Zhang, F.-w.; Sun, J.; Ma, J.-t., Palladium immobilized in the nanocages of SBA-16: An efficient and recyclable catalyst for Suzuki coupling reaction. Microporous and Mesoporous Materials 2013, 168, 65-72.
37. Chen, C.-S.; Budi, C. S.; Wu, H.-C.; Saikia, D.; Kao, H.-M., Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous silica as highly active catalysts for CO2 hydrogenation. ACS Catalysis 2017, 7 (12), 8367-8381.
38. Chandra, M.; Xu, Q., A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammonia–borane. Journal of Power Sources 2006, 156 (2), 190-194.
39. Akbayrak, S.; Özkar, S., Ruthenium (0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia–borane. ACS applied materials & interfaces 2012, 4 (11), 6302-6310.
40. Cao, N.; Luo, W.; Cheng, G., One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. International journal of hydrogen energy 2013, 38 (27), 11964-11972.
41. Yao, Q.; Shi, W.; Feng, G.; Lu, Z.-H.; Zhang, X.; Tao, D.; Kong, D.; Chen, X., Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Journal of Power Sources 2014, 257, 293-299.
42. Tonbul, Y.; Akbayrak, S.; Özkar, S., Nanozirconia supported ruthenium (0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane. Journal of colloid and interface science 2018, 513, 287-294.
43. Souza, F. D.; Fiedler, H.; Nome, F., Zwitterionic surfactant stabilized palladium nanoparticles as catalysts in aromatic nitro compound reductions. Journal of the Brazilian Chemical Society 2016, 27 (2), 372-381.
44. Ajmal, M.; Siddiq, M.; Al-Lohedan, H.; Sahiner, N., Highly versatile p (MAc)–M (M: Cu, Co, Ni) microgel composite catalyst for individual and simultaneous catalytic reduction of nitro compounds and dyes. RSC Advances 2014, 4 (103), 59562-59570.
45. Yang, Y.; Zhang, Y.; Sun, C. J.; Li, X.; Zhang, W.; Ma, X.; Ren, Y.; Zhang, X., Heterobimetallic Metal–Organic Framework as a Precursor to Prepare a Nickel/Nanoporous Carbon Composite Catalyst for 4‐Nitrophenol Reduction. ChemCatChem 2014, 6 (11), 3084-3090.
46. Wu, W.; Lei, M.; Yang, S.; Zhou, L.; Liu, L.; Xiao, X.; Jiang, C.; Roy, V. A., A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry A 2015, 3 (7), 3450-3455.
47. Tian, Y.; Liu, Y.; Pang, F.; Wang, F.; Zhang, X., Green synthesis of nanostructed Ni-reduced graphene oxide hybrids and their application for catalytic reduction of 4-nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 464, 96-103.
48. Krishna, R.; Fernandes, D. M.; Ventura, J.; Freire, C.; Titus, E., Novel synthesis of highly catalytic active Cu@ Ni/RGO nanocomposite for efficient hydrogenation of 4-nitrophenol organic pollutant. International Journal of Hydrogen Energy 2016, 41 (27), 11608-11615.
49. Seethapathy, V.; Sudarsan, P.; Pandey, A. K.; Pandiyan, A.; Kumar, T. V.; Sanjeevi, K.; Sundramoorthy, A. K.; Moorthy, S. B. K., Synergistic effect of bimetallic Cu: Ni nanoparticles for the efficient catalytic conversion of 4-nitrophenol. New Journal of Chemistry 2019, 43 (7), 3180-3187.
50. Li, N.; Wang, J.-G.; Zhou, H.-J.; Sun, P.-C.; Chen, T.-H., Synthesis of single-crystal-like, hierarchically nanoporous silica and periodic mesoporous organosilica, using polyelectrolyte–surfactant mesomorphous complexes as a template. Chemistry of Materials 2011, 23 (18), 4241-4249.
51. Xu, J.; Liu, W.; Yu, Y.; Du, J.; Li, N.; Xu, L., Synthesis of mono-dispersed mesoporous SBA-1 nanoparticles with tunable pore size and their application in lysozyme immobilization. RSC Advances 2014, 4 (71), 37470-37478.
52. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
53. Deka, J. R.; Kao, H. M.; Huang, S. Y.; Chang, W. C.; Ting, C. C.; Rath, P. C.; Chen, C. S., Ethane‐Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acid Groups: Synthesis, Bifunctionalization, and Fabrication of Metal Nanoparticles. Chemistry–A European Journal 2014, 20 (3), 894-903.
54. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
55. Chandra, M.; Xu, Q., Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. Journal of power sources 2006, 159 (2), 855-860.
56. Zhao, X.; Li, Q.; Ma, X.; Xiong, Z.; Quan, F.; Xia, Y., Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol. RSC Advances 2015, 5 (61), 49534-49540.
57. Cui, Z.; Guo, Y.; Feng, Z.; Xu, D.; Ma, J., Ruthenium nanoparticles supported on nitrogen-doped porous carbon as a highly efficient catalyst for hydrogen evolution from ammonia borane. New Journal of Chemistry 2019, 43 (11), 4377-4384.
58. Yao, Q.; Lu, Z.-H.; Yang, K.; Chen, X.; Zhu, M., Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane. Scientific reports 2015, 5, 15186.
59. Zhong, F.; Wang, Q.; Xu, C.; Yang, Y.; Wang, Y.; Zhang, Y.; Gao, D.; Bi, J.; Fan, G., Ultrafine and highly dispersed Ru nanoparticles supported on nitrogen-doped carbon nanosheets: Efficient catalysts for ammonia borane hydrolysis. Applied Surface Science 2018, 455, 326-332.
60. Sarıca, E.; Akbayrak, S.; Özkar, S., Ruthenium (0) nanoparticles supported on silica coated Fe3O4 as magnetically separable catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2018, 43 (32), 15124-15134.
61. Zahmakiran, M., Preparation and characterization of LTA-type zeolite framework dispersed ruthenium nanoparticles and their catalytic application in the hydrolytic dehydrogenation of ammonia–borane for efficient hydrogen generation. Materials Science and Engineering: B 2012, 177 (8), 606-613.
62. Chandra, M.; Xu, Q., Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. Journal of Power Sources 2007, 168 (1), 135-142.
63. Xu, Z.; He, X.; Liang, M.; Sun, L.; Li, D.; Xie, K.; Liao, L., Catalytic reduction of 4-nitrophenol over graphene supported Cu@ Ni bimetallic nanowires. Materials Chemistry and Physics 2019, 227, 64-71.
64. Sun, Y.; Xu, L.; Yin, Z.; Song, X., Synthesis of copper submicro/nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenol reduction. Journal of Materials Chemistry A 2013, 1 (39), 12361-12370.
65. Sun, L.; Deng, Y.; Yang, Y.; Xu, Z.; Xie, K.; Liao, L., Preparation and catalytic activity of magnetic bimetallic nickel/copper nanowires. RSC Advances 2017, 7 (29), 17781-17787.
66. Zhang, Y.; Yan, W.; Sun, Z.; Li, X.; Gao, J., Fabrication of magnetically recyclable Ag/Cu@ Fe 3 O 4 nanoparticles with excellent catalytic activity for p-nitrophenol reduction. Rsc Advances 2014, 4 (72), 38040-38047.
67. Li, C.; Luan, Y.; Zhao, B.; Kumbhar, A.; Fang, J., Size-Controlled Synthesis of CuNi Nano-Octahedra and Their Catalytic Performance towards 4-Nitrophenol Reduction Reaction. MRS Advances 2019, 4 (5-6), 263-269.
68. Borah, B. J.; Bharali, P., Surfactant-free synthesis of CuNi nanocrystals and their application for catalytic reduction of 4-nitrophenol. Journal of Molecular Catalysis A: Chemical 2014, 390, 29-36.
指導教授 高憲明 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明