博碩士論文 106223018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.149.255.69
姓名 林天立(Tien-Li Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發甲烷/非甲烷總烴分析儀應用於污染源觸發採樣
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的為開發可應用於周界中非甲烷總碳氫化合物 ( total non-methane hydrocarbon, tNMHC ) 的分析方法,以現今普遍使用之抽氣式觸媒法為基礎,成功設計出獨特以 流動注射的觸媒法 ( flow injection ),希冀降低偵測下限,並應用於工業廠區周界空 氣的連續監測。

實驗主要分為三個部分,第一部分為工業區周界中 tNMHC 的分析方法開發,並將此方法應用於自製的總碳氫分析儀。而常見分析總碳氫方法的系統可分為兩類 : 1. 使用分析管柱的層析法 2.使用觸媒轉化的觸媒法,管柱層析法為使用層析管柱在定溫的條件下將甲烷與 VOCs 分離,利用分流的方式分別得到總碳氫 ( total hydrocarbon, THCs ) 與甲烷的訊號,將兩者相扣即得到 tNMHC的數值;觸媒法則使用觸媒催化的效果消除甲烷以外的 VOCs,並使用電磁閥控制樣品是否流經觸 媒反應槽的方式,分別得到 THC 與甲烷的訊號,最後兩者相扣得到 tNMHC的數值。

本次實驗以觸媒法為基礎,開發了不同於以往連續抽氣方式的流動注射法 ( flow injection ),使用樣品迴圈 ( sample loop ) 來儲存定量的樣品,以瞬間注射的方式將樣品注入到偵測器,而得到類似層析峰的效果,以此種模擬層析出峰的方式,比起連續式持續的通過轉化觸媒,可大幅增加觸媒的使用壽命。

第二部分為開發取代十孔氣動閥 ( valco 10 port valve ) 的鋁塊式注射器,此 部分沿用先前實驗室開發出 鋁塊預埋式氣體歧管 ( pre-drilled aluminum block manifold ) 的設計理念,將 Valco 10 port valve內部的流道加工於鋁塊當中,搭配電磁閥 ( solenoid valve ) 控制樣品的流向,達到與氣動閥相同的效果。兩者相比較下,鋁塊注射器有較小的體積,且製作的成本相對較低 ,在標準品連續的測式上,相對標準偏差 (relative standard deviation, RSD) 也小於 5 % ,在未來的系統應用上有很大的潛力。

第三部分 為將自製的總碳氫分析儀搭配自動採樣裝置,以觸發的方式驅動自動採樣器捕捉高濃度的污染事件,並應用於工業廠區周界的 VOCs連續監測。近年來發生多起工業區的氣爆的事件,而大多數的意外皆源於易燃氣體的大量外洩所致,由於廣大的廠區內存在著眾多的閥件、氣體傳輸管線與儲槽,多數的閥件在經過長時間的運作下,將產生磨耗或風化的情況,最終導致易燃氣體的大量洩漏而引發氣爆的危機。因此本實驗室使用自製的總碳氫分析儀,以快速分析的方式連續監測廠區周界 VOCs 的濃度,最後以 GC/MS/FID 分析捕捉到的污染事件樣品。
摘要(英) A new method to analyze ambient total non-methane hydrocarbons (tNMHC) were developed. Modified from the continuous flow catalyst method commonly used today, a unique method of flow injection was successfully designed aiming at achieving a lower detection limit than the continuous flow type when monitoring ambient air.

The experiment is divided into three parts. The first part is to develop methods for tNMHC measurement at the perimeter of industrial zones, which can be divided into two types of chromatography based versus catalytic based. The first type mainly uses chromatographic columns to separated methane from NMHC in isothermal condition, and the total hydrocarbon (THC) and methane signals are individually obtained by splitting the sample flow into two, with one going to an empty column and the other going to a chromatographic column. The value of tNMHC is obtained by the THC value subtracting the methane value. The second type uses catalyst to oxidize NMHC without oxidizing methane. The sample flow alternatively going through the catalyst vs. not going through the catalyst yields the signals of methane vs. THC. Subsequently, the tNMHC value is obtained by subtracting the methane value from that of THC. While the second type is more of a conventional design where the sample flow is continuous, a modified method was derived based on the concept of flow injection. A sample loop and a switching value were used to inject sample in a fill-and-flush manner. This so-called flow injection mode would produce signals that mimic chromatographic peaks, which in theory not only can decrease the detection limit, but also greatly prolong the life spend of the catalyst.

The second part is the development of an aluminum block injector to replace the commercial 10-port switching valve. Precision machining technology was adopted to make multiple flow paths inside the aluminum block, and 8 solenoid valves were used to control the flow directions of the sample to achieve the same effect as the switching valve. In comparison, the aluminum block injector has a small volume and the production cost is relatively low. Relative standard deviation (RSD) is better than 5%. This self-developed manifold is expected to be applicable in many areas of trace gas analysis.

The third part of this thesis is to use the self-built THC analyzer to trigger canister samples to capture pollution plumes for detailed chemical composition. For testing, the analyzer was deployed at the perimeter of a refinery plant. The continuous monitoring last one month with minute resolution with preset trigger levels to capture pollution event samples. This field test resulted in capturing 13 event samples, which were analyzed by in-lab GC/MS/FID for 108 compounds.
關鍵字(中) ★ 觸發自動採樣系統
★ 總碳氫與非甲烷總碳氫
關鍵字(英) ★ Trigger automatic sampling system
★ THC and tNMHCs
論文目次 目錄
摘要
i
Abstract iii
謝誌 v
目錄 vii
圖目錄 xi
表目錄 xviii
第一章
前言 1
1-1 研究動機 1
1-2 研究緣起 3
1-3 VOCs排放情況與國內法規 9
1-4 VOCs 分析方法統整 12
1-5 方法回顧 14
第二章
流動注射法與儀器開發 19
2-1 觸媒應用於 VOCs催化 19
viii
2-2 方法設計方法設計 .................................................................................................................................................................... 22
2-2-1 流動注射法流動注射法 ...................................................................................................................................... 22
2-2-2 觸媒材料選擇觸媒材料選擇 .............................................................................................................................. 26
2-3 觸媒催化效果與最佳化觸媒催化效果與最佳化 .................................................................................................................... 27
2-3-1 測試系統測試系統 .............................................................................................................................................. 27
2-3-2 觸媒選擇性效果測試觸媒選擇性效果測試 ...................................................................................................... 32
2-3-3 Palladium on alumina ( 10 % wt ) 觸媒條件最佳化條件最佳化 ...... 42
2-4 觸媒系統穩定性與轉化率觸媒系統穩定性與轉化率 ............................................................................................................ 53
2-5 方法建製方法建製 .................................................................................................................................................................... 58
2-5-1 流動注射法系統流動注射法系統 ...................................................................................................................... 58
2-5-2 儀器開發設計儀器開發設計 .............................................................................................................................. 63
2-5-3 系統元件系統元件 .............................................................................................................................................. 64
2-5-4 LabVIEW自動化連續監測軟體自動化連續監測軟體 .................................................................... 68
2-6 自製流動注射法總碳氫儀測試結果自製流動注射法總碳氫儀測試結果 ............................................................................ 71
2-7 小結小結 .................................................................................................................................................................................... 73
ix
第三章
第三章 鋁塊式注射器之開發鋁塊式注射器之開發 .............................................................................................................................................. 75
3-1 研究目標研究目標 .................................................................................................................................................................... 75
3-1-1 額外管額外管柱效應柱效應 .............................................................................................................................. 77
3-1-2 鋁塊式注射器之應用鋁塊式注射器之應用 ...................................................................................................... 79
3-2 NIEA A723.73B系統流路設計系統流路設計 .............................................................................................. 81
3-2-1 總碳氫分析儀總碳氫分析儀 .............................................................................................................................. 83
3-2-2 氣相層析管柱選擇氣相層析管柱選擇 .............................................................................................................. 85
3-3 系統分析結果比較系統分析結果比較 .................................................................................................................................... 89
3-4 小結小結 .................................................................................................................................................................................... 93
第四章
第四章 總碳氫分析儀搭配觸發自動採樣器實場應用總碳氫分析儀搭配觸發自動採樣器實場應用 .............................................................. 94
4-1 研究目標研究目標 .................................................................................................................................................................... 94
4-2 廠區周界污染物監測廠區周界污染物監測 ............................................................................................................................ 99
4-3 設備介紹設備介紹 ................................................................................................................................................................ 102
4-3-1 總碳氫分析儀總碳氫分析儀 .......................................................................................................................... 103
4-3-2 氣相層析管柱選擇氣相層析管柱選擇 .......................................................................................................... 106
x
4-3-3 自動採樣系統自動採樣系統 .......................................................................................................................... 108
4-3-4 總碳氫儀搭配觸發採樣系統總碳氫儀搭配觸發採樣系統.......................................................................... 110
4-3-5 自動控制軟體自動控制軟體 .......................................................................................................................... 113
4-4 實場觀測與裝置架設實場觀測與裝置架設 ........................................................................................................................ 116
4-5 結果與討論結果與討論 ........................................................................................................................................................ 120
4-5-1 系統數據分析系統數據分析 .......................................................................................................................... 120
4-5-2 觸發閾值觸發閾值&污染事件探討污染事件探討 .................................................................................. 122
4-5-3 觸發採樣樣品分析觸發採樣樣品分析 .......................................................................................................... 127
4-5-4 GC/MS/FID成分分析成分分析 .................................................................................................. 131
4-6 小結小結 ................................................................................................................................................................................ 135
第五章
第五章 總結總結.................................................................................................................................................................................................... 136
第六章
第六章 參考文獻參考文獻 .................................................................................................................................................................................. 137
參考文獻 [1] https://oaout.epa.gov.tw/law/LawContent.aspx?id=GL005189
[2]https://taqm.epa.gov.tw/taqm/tw/traffic-1.aspx
[3]Atkinson, R., A Structure-Activity Relationship for the Estimation of Rate Constants for the Gas-Phase Reactions of OH Radicals with Organic Compounds. International Journal of Chemical Kinetics, 1987. 19: p. 799-828.
[4]Ryerson., T.B., et al., Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. SCIENCE, 2001.292.
[5]https://www.epa.gov/ozone-pollution-and-your-patients-health/health-effects-ozone-general-population
[6]McDonnell., W.F., et al., Long-Term Ambient Ozone Concentration andthe Incidence of Asthma in Nonsmoking Adults: The Ahsmog Study.Environmental Research Section A, 1998. 80: p. 110-121.
[7]Gryparis, A., et al., Acute effects of ozone on mortality from the "air pollution and health: a European approach" project. Am J Respir Crit Care Med, 2004. 170(10): p. 1080-7.
[8]https://air.ksepb.gov.tw/Article/Detail/3
[9]Xing, Y.F., et al., The impact of PM2.5 on the human respiratory system. JThorac Dis, 2016. 8(1): p. E69-74.
[10]Atkinson., R., Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 2000. 34: p. 2063-2101.
[11]Camredon., M., et al., The SOA/VOC/NOx system: an explicit model of 138 secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2007. 7: p. 5599-5610.
[12]Poschl, U., Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed Engl, 2005. 44(46): p. 7520-40.
[13]Kennedy, I.M., The health effects of combustion-generated aerosols.Proceedings of the Combustion Institute, 2007. 31(2): p. 2757-2770.
[14]Baltensperger, U., et al., Combined determination of the chemical composition and of health effects of secondary organic aerosols: the POLYSOA project. J Aerosol Med Pulm Drug Deliv, 2008. 21(1): p. 145-54.
[15]Bond, T.C. and R.W. Bergstrom, Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Science and Technology,2006. 40(1): p. 27-67.
[16]Chang, C.-C., et al., Seasonal characteristics of biogenic and anthropogenic isoprene in tropical–subtropical urban environments.Atmospheric Environment, 2014. 99: p. 298-308.
[17]Chang, C.-C., et al., Source characterization of ozone precursors by complementary approaches of vehicular indicator and principalcomponent analysis. Atmospheric Environment, 2009. 43(10): p. 1771-1778.
[18] Reimann., S., P. Calanca, and P. Hofer, The anthropogenic contribution to isoprene concentrations in a rural atmosphere. Atmospheric Environment,2000. 34: p. 109-115.139
[19]中華民國行政院原境保護署,中華民國106 年度空氣污染防制總檢討. 民國106.
[20]Chen, S.-P., et al., Network monitoring of speciated vs. total non-methane hydrocarbon measurements. Atmospheric Environment, 2014. 90: p. 33-42.
[21]林崴涓, 煙道氣揮發性有機化合物連續監測方法開發. 民國104.
[22]游可綱, 新型熱脫附濃縮儀設計應用於揮發性有機污染物分析. 民國106.
[23]Wang, C.H., S.W. Chiang, and J.L. Wang, Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimensional gas chromatography. J Chromatogr A, 2010. 1217(3): p.353-8.
[24]Kim, S.C. and W.G. Shim, Catalytic combustion of VOCs over a series of manganese oxide catalysts. Applied Catalysis B: Environmental, 2010.98(3-4): p. 180-185.
[25]Saitoh., O., et al., Separation method of methane from other hydrocarbons than methane. United States Patent, 1977.
[26]中華民國行政院原境保護署, 排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火燄離子化偵測法. 民國100.
[27]中華民國行政院原境保護署, 空氣中總碳氫化合物自動檢測方法. 民國103.
[28]中華民國行政院原境保護署, 排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-觸媒轉化. 民國108.
[29]O’Malley., A. and B.K. Hodnett., The influence of volatile organic compound structure on conditions required for total oxidation. Catalysis Today, 1999. 54: p. 31-38.
[30]Abbasi, Z., et al., Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs. JHazard Mater, 2011. 186(2-3): p. 1445-54.
[31]Demoulin, O., et al., Combustion of methane, ethane and propane and of mixtures of methane with ethane or propane on Pd/γ-Al2O3 catalysts.Applied Catalysis A: General, 2008. 344(1-2): p. 1-9.
[32]Shen, W., et al., Mesoporous CeO2 and CuO-loaded mesoporous CeO2:Synthesis, characterization, and CO catalytic oxidation property.Microporous and Mesoporous Materials, 2005. 85(1-2): p. 157-162.
[33]龎文韶, 氣相層析自動化控制與積分演算法應用於空氣中有機污染物連續監測. 民國107.
[34]戴順育, 氣相層析技術應用於揮性有機化合物分析方法中熱脫附行為之診斷. 民國103.
[35]Su, Y.C., et al., Full-range analysis of ambient volatile organic compounds by a new trapping method and gas chromatography/mass spectrometry. J Chromatogr A, 2011. 1218(34): p. 5733-42.
[36]蘇源昌 , 自動氣相層析質譜儀於揮發性有機化合物之分析技術與應用 . 民國 100.
[37]Minikis., R.M. and J.W. Dolan., Extracolumn Effects. LCGC NORTH AMERICA, 2003. 21: p. 1050-1054.
[38]中華民國行政院原境保護署 , 環保公害陳情受理案件統計 . 民國 106.
[39]Chen., L.-Y., et al., Rationalization of an Odor Monitoring System: A Case Study of Lin-Yuan Petrochemical Park. Environ. Sci. Technol,2000. 34: p. 1166-1173.
[40]Ou-Yang, C.-F., et al., Guided episodic sampling for capturing and characterizing industrial plumes. Atmospheric Environment, 2018. 174:p. 188-193.
[41]0stermark., U., Characterization of voltile hydrocarbons emitted to air from a cat-cracking refinery. Chemospher, 1995. 30: p. 1813-1817.
[42]Yen, C.H. and J.J. Horng, Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan. J Environ Sci Health A Tox Hazard Subst Environ Eng,2009. 44(13): p. 1424-9.
[43]王惠通 , et al., 石化業 VOCs 排 放特性探討 . 工業污染防治 , 2009.110: p. 175-193.
指導教授 王家麟(Jia-Lin Wang) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明