博碩士論文 106223026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.226.245.48
姓名 王秩欣(Chih-Hsin Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用於反式鈣鈦礦太陽能電池元件之有機小分子電子傳遞材料的合成
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-26以後開放)
摘要(中) 在反式鈣鈦礦太陽能電池(Perovskite solar cells, PSC)中,一般使用PCBM作為電子傳遞層材料(Electron Transport Material, ETM),但因PCBM不易純化,且製造成本高,因此近年來開始發展新的有機分子以作為反式鈣鈦礦太陽能電池元件之ETM。本研究以具有高熱穩定性、拉電子能力好的HAT (Hexaazatriphenylene)作為核心,利用其平面性及剛性結構有較好堆疊,電子遷移率較高,並在分子加入長碳鏈增加分子的溶解度,或在核心與碳鏈之間,插入一個硫原子,以增加硫-鉛、硫-碘的交互作用力來增加ETM和鈣鈦礦層的接觸。也將硫氧化成碸,或將thiophene改為thiazole,增強分子拉電子能力,並提高電子遷移率,合成出HAPN-1、HAPN-2、HAPN-3、HAPN-4、HAPN-5、HAPN-6六個化合物。實驗結果顯示,HAPN-1、HAPN-2、HAPN-3、HAPN-6之LUMO能階高於MAPbI3的LUMO能階,而HAPN-4、HAPN-5略高於MAPbI3的LUMO能階。由於碳鏈為支鏈或直鏈並不影響分子本質,因此電化學及UV-Vis吸收光譜的測試結果顯示,HAPN-2和HAPN-3的還原電位及吸光特性相似,HAPN-4與HAPN-5的光、電性質也相似,有強拉電子官能基的HAPN-4、HAPN-5、HAPN-6的最大吸收波長較HAPN-、HAPN-2、HAPN-3紅位移,還原電位也較高。由熱差示掃描分析(DSC)數據得知,只有碳鏈為直鏈的HAPN-3、HAPN-5分別在溫度110 oC及60 oC左右有一個吸熱峰產生,由TGA數據得知在此溫度範圍內,分子並不會分解。將五個材料製作為電子傳遞層組裝成元件,以長碳鏈為直鏈的HAPN-3、HAPN-5為電子傳遞層所組裝的元件比碳鏈為支鏈的HAPN-2、HAPN-4為電子傳遞層所組裝的元件光電轉換效率高。但由五個分子為ETM的元件光電轉換效率都不高,是由於分子能階和MAPbI3的能階不匹配,此外分子無法由旋轉塗佈法製備一個完整且連續的膜,因此電子無法順利傳遞至電極。其中HAPN-5因為sulfone官能基有增加電子遷移率的功能,以HAPN-5作為電子傳遞層的元件有光電轉換效率可達4.13%。
摘要(英) PCBM is generally used as an electron transport material (ETM) in Perovskite solar cells (PSC). However, PCBM is not easy to be purified therefore the cost is high. The developments of new organic ETM for inverted PSC have begun in recent years. In this study, five ETMs, HAPN-1, HAPN-2, HAPN-3, HAPN-4, HAPN-5, and HAPN-6 were synthesized for applying in PSCs. In these ETMs, HAT (Hexaazatriphenylene) with high thermal stability and good electron-trapping ability is used as the core for building the molecules. The planarity and rigid structure of HAT core can stack well in solid state to achieve high electron mobility. The long alkyl chains are added to the core to increase the solubility of the molecules. Furthermore inserting a sulfur atom between the core and the alkyl chain to increase the interaction between sulfur and lead or sulfur and iodine in perovskite to increase the contact between ETM and perovskite layer. Finally the sulfur on the alkyl chain was oxidized to form sulfone or the thiophene was replaced by thiazole to enhance the electrons attraction and increase the charge mobility of ETMs. The results show that the LUMO of HAPN-1, HAPN-2, HAPN-3, and HAPN-6 are higher than the LUMO of MAPbI3, while the LUMO of HAPN-4, HAPN-5 are slightly higher than the LUMO of MAPbI3. The electrochemical properties and absorbance characteristics of HAPN-2 and HAPN-3 are similar. HAPN-4 and HAPN-5 also have close optical and electrical properties. These findings suggest that the alkyl chain on the molecule did not affect the optic and electric properties of the molecules. HAPN-4, HAPN-5, and HAPN-6 with stronger electron withdrawing group have not only redshifted maxium absorption wavelength but also higher reduce potential. Differential scanning calorimetry (DSC) analysis revealed that only HAPN-3 and HAPN-5 which have linear alkyl chain have the endothermic peak at temperatures of 110 oC and 60 oC, respectively. In these temperature range, the molecules do not decompose from the TGA data. HAPN-3 and HAPN-5 with linear alkyl chain as the ETL for inverted PSC have higher photoelectric conversion efficiency (PCE) than HAPN-2 and HAPN-4 with branch alkyl chain respectively. However, the PCEs of the cells based on these five ETMs are all less than 5%. It may due to the unmatched LUMO level between MAPbI3 and ETM. The new ETM cannot form a continuous and dense film by spin coating may be another reason for the low photo-voltaic performance. The cell based on HAPN-5 ETL has the highest PCE of 4.13% among the five ETMs may the sulfone functional group increases the electron mobility.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電子傳遞材料
★ 有機合成
關鍵字(英) ★ perovskite solar cell
★ electron transporting materials
★ organic synthesis
論文目次 摘要 I
Abstract III
Graphical Abstract V
謝誌 VI
目錄 VII
圖目錄 X
表目錄 XII
第一章、緒論 1
1-1、 前言 1
1-2、 太陽能電池的種類 1
1-3、 鈣鈦礦太陽能電池(Perovskite Solar Cell, PSC) 3
1-3-1. 鈣鈦礦太陽能電池的架構 3
1-3-2. 反式鈣鈦礦太陽能電池的工作原理 5
1-3-3. 鈣鈦礦太陽能電池的光電轉換效率 6
1-4、 鈣鈦礦太陽能電池的電子傳遞層材料 8
1-4-1. 使用Azaacene基團的有機小分子作為鈣鈦礦太陽能電池元件的電子傳遞層材料 10
1-4-2. 結構具有剛性的電子傳遞層材料 13
1-4-3. 芳香多雜環(Polyheterocyclic Aromatic, PHA)的電子傳遞層材料 15
1-5、 研究動機 20
第二章、實驗部分 22
2-1、 實驗藥品與儀器設備 22
2-1-1. 藥品 22
2-1-2. 儀器設備 24
2-2、 儀器分析及樣品製備 24
2-2-1. 聚焦微波化學反應系統(CEM) 24
2-2-2. 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer) 25
2-2-3. 紫外/可見/紅外光分光光譜儀(UV/Vis Spectrometer) 26
2-2-4. 電化學測量(Electrochemical Measurement System) 27
2-2-5. 熱重分析(Thermogravimetric Analysis) 28
2-2-6. 示差掃描熱分析(Differential Scanning Calorimetry) 29
2-3、 產物與中間產物之結構與簡稱 30
2-4、 實驗步驟 35
2-4-1. HAPN-1的合成步驟,如圖 2-4-1所示 35
2-4-2. HAPN-2的合成步驟,如圖 2-4-2所示 39
2-4-3. HAPN-3的合成步驟,如圖 2-4-3所示 43
2-4-4. HAPN-4的合成步驟,如圖 2-4-4所示 47
2-4-5. HAPN-5的合成步驟,如圖 2-4-5所示 48
2-4-6. HAPN-6的合成步驟,如圖 2-4-6所示 50
2-5、 反式鈣鈦礦太陽能電池元件 53
2-5-1. 反式鈣鈦礦太陽能電池元件的組裝 53
2-5-2. 元件光伏參數的量測步驟 54
2-5-3. 導電度的量測步驟 55
第三章、結果與討論 56
3-1、 紫外光/可見光吸收光譜 56
3-2、 ETM的前置軌域能階 58
3-3、 材料的熱穩定性質 62
3-4、 材料應用在反式鈣鈦礦太陽能電池之光伏表現 64
第四章、結論 69
參考文獻 71
附錄 77
附錄一、 HATN-1、HATN-2中間產物及最終產物的分子結構和簡稱 78
附錄二、 HATN-1、HATN-2的合成及性質 80
附錄三、 1H-NMR光譜圖 87
附錄四、 元素分析、質譜圖 97
附錄五、 循環伏安圖 103
參考文獻 [1] https://www.materialsnet.com.tw/DocView.aspx?id=35388 (2018年9月5日)
[2] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf, August 2nd, 2019.
[3] http://en.wikipedia.org/wiki/Gustav_Rose (2017年8月11日)
[4] W. Q. Wu, Z. Yang, P. N. Rudd, Y. Shao, X. Dai, H. Wei, J. Zhao, Y. Fang, Q. Wang, Y. Liu, Y. Deng, X. Xiao, Y. Feng, J. Huang “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv., 2019, 5, 8925-8933.
[5] J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao, A. Gruverman, J. Shield J. Huang “Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?”, Energy Environ. Sci., 2016, 9, 3650-3656.
[6] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519-522.
[7] W. Q. Wu, D. Chen, R. A. Caruso, Y. B. Cheng “Recent progress in hybrid perovskite solar cells based on n-type materials”, J. Mater. Chem. A, 2017, 5, 10092-10109.
[8] Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, H. Wei, W. Ma, X. C. Zeng, X. Zhan, J. Huang “π-Conjugated lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells”, Adv. Mater., 2017, 1604545-1604550.
[9] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells”, Nature Communications, 2013, 2885-2892
[10] F. Wu, W. Gao, H. Yu, L. Zhu, L. Li, C. Yang “Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 4443-4448.
[11] Y. He, Y. Li “Fullerene derivative acceptors for high performance polymer solar cells”, Phys. Chem. Chem. Phys., 2011, 13, 1970-1983
[12] F. Wu, W. Gao, H. Yu, L. Zhu, L. Li, C. Yang “Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 4443-4448.
[13] Z. Zhu, J. Q. Xu, C. C. Chueh, H. Liu, Z. Li, X. Li, H. Chen, A. K.Y. Jen “A low-temperature, solution-processable organic electron-transporting layer based on planar coronene for high-performance conventional perovskite solar cells“ , Adv. Mater., 2016, 10786-10793.
[14] C. Wang, J. Wang, P. Z. Li, J. Gao, S. Y. Tan, W. W. Xiong, B. Hu, P. S. Lee, Y. Zhao, Q. Zhang, “Synthesis, characterization, and non-volatile memory device application of an N-substituted heteroacene”, Chem Asian J, 2014, 9, 779-783.
[15] C. Wang, P. Gu, B.Hu, Q. Zhang, “Recent progress in organic resistance memory with small molecules and inorganic–organic hybrid polymers as active elements”, J. Mater. Chem. C, 2015, 3, 10055-10065.
[16] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051
[17] P. Y. Gu, N. Wang, C. Wang, Y. Zhou, G. Long, M. Tian, W. Chen, X. W. Sun, M. G. Kanatzidis, Q. Zhang, , ”Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer”, J. Mater. Chem. A, 2017, 5, 7339-7344.
[18] K. Wen, X. Pan, S. Feng, W. Wu, X. Guo, J. Zhang “Improving the electron transport performance by changing side chains in sulfur-containing azaacenes: a combined theoretical investigation on free molecules and an adsorption system”, New J. Chem., 2019, 43, 5414-5422.
[19] F. Wu, W. Gao, H. Yu, L. Zhu, L. Li, C. Yang “Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 4443-4448.
[20] W. Gao, Q. An, R. Ming, D. Xie, K. Wu, Z. Luo, Y. Zou, F. Zhang, C. Yang, “Side Group Engineering of Small Molecular Acceptors for High‐Performance Fullerene‐Free Polymer Solar Cells: Thiophene Being Superior to Selenophene” Adv. Funct. Mater., 2017, 27, 1702194-1702203.
[21] J. L. Segura, R. Jua´rez, M.Ramos, C. Seoane “Hexaazatriphenylene (HAT) derivatives: from synthesis to molecular design, self-organization and device applications”, Chem. Soc. Rev., 2015, 44, 6850-6885.
[22] F. Selzer, C. Falkenberg, M. Hamburger, M. Baumgarten, K. Müllen, K. Leo, M. Riede, “Improved organic p-i-n type solar cells with n-doped fluorinated hexaazatrinaphthylene derivatives HATNA-F6 and HATNA-F12 as transparent electron transport material”, J. Appl. Phys., 2014, 115, 054515-054520.
[23] D. B. Zhao, Z. L. Zhu, M. Y. Kuo, C. C. Chueh, A. K. Y. Jen. “Hexaazatrinaphthylene derivatives: efficient electron-transporting materials with tunable energy levels for inverted perovskite solar cells”, Angew. Chem. Int. Ed., 2016, 55, 8999-9003.
[24] N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith “Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites”, ACS Nano, 2014, 8, 9815-9821.
[25] N. Wang, K. Zhao, T. Ding, W. Liu, A. S. Ahmed, Z. Wang, M. Tian, X. W. Sun, Q. Zhang “Improving interfacial charge recombination in planar heterojunction perovskite photovoltaics with small molecule as electron transport layer”, Adv. Energy Mater., 2017, 1700522-1700529.
[26] B. L. Hayes “Recent Advances in Microwave Assisted Synthesis.” Aldricchem. Aceta., 2004, 17, 65-76.
[27] 魏伸紘,「以電化學法檢測人類乳突病毒序列之研究」,國立交通大學,碩士論文,2004。
[28] http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles, August 13th, 2017.
[29] V. V. Pavlishchuk, A. W. Addison, “Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C”, Inorganica Chim. Acta, 2000, 298, 97-102.
[30] J. Shao, X. Guo, N. Shi, X. Zhang, S. Liu, Z. Lin, B. Zhao,J. Chang, J. Shao, X. Dong ”Acenaphthylene-imide based small molecules/TiO2 bilayer as electron-transporting layer for solution-processing efficient perovskite solar cells”, Sci. China Mater., 2019, 62, 497-507.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2019-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明